Synlett 2024; 35(08): 908-914
DOI: 10.1055/s-0042-1751485
cluster
Special Issue dedicated to Keith Fagnou

Nickel-Catalyzed Transesterification of Methyl Esters

Yan-Long Zheng
a   Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. of China
b   Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
,
Omid Daneshfar
b   Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
,
Jia-Yi Li
a   Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. of China
,
Jeanne Masson-Makdissi
b   Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
,
Émile Pinault-Masson
b   Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
,
Stephen G. Newman
b   Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
› Author Affiliations
Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2020-05065), the Canada Research Chairs Program (Grant No. 950-232650), and the National Natural Science Foundation of China (Grant No. 22101203). The Canada Foundation for Innovation and the Ontario Ministry of Research, Innovation and Science are thanked for essential infrastructure. We also thank the start-up funds from Tianjin University of Technology. J.M.-M. thanks the Natural Sciences and Engineering Research Council of Canada for a Canada Graduate Scholarship–Masters fellowship.


Dedicated to the late Prof. Keith Fagnou on the 20th anniversary of the start of his academic career.

Abstract

A transesterification of methyl esters with aliphatic alcohols was developed using Ni/dcype catalysis. This reaction features the cleavage of the strong C(acyl)–OMe bond in the absence of acidic or basic additives, providing volatile methanol as the only stoichiometric waste product. A wide range of (hetero)aromatic and aliphatic methyl esters can be converted into the corresponding functionalized esters in good to excellent yields with high efficiency. Compared with traditional transesterifications, this cross-coupling approach offers new opportunities for efficient and chemoselective synthesis.

Supporting Information



Publication History

Received: 02 June 2023

Accepted after revision: 10 July 2023

Article published online:
04 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 1b Johansson SeechurnC. C. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 1c Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 1d Ruiz-Castillo PBuchwald S. L. Chem. Rev. 2016; 116: 12564
    • 3a Douglas JJ, Sevrin MJ, Stephenson CR. Org. Process Res. Dev. 2016; 20: 1134
    • 3b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 3c Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 4a Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 4b Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 4c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 5 Boit TB, Bulger AS, Dander JE, Garg NK. ACS Catal. 2020; 10: 12109
    • 6a Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
    • 6b Twitty JC, Hong Y, Garcia B, Tsang S, Liao J, Schultz DM, Hanisak J, Zultanski SL, Dion A, Kalyani D, Watson MP. J. Am. Chem. Soc. 2023; 145: 5684
  • 9 Zheng Y.-L, Newman SG. Chem. Commun. 2021; 57: 2591
    • 10a Ben HalimaT, Zhang W, Yalaoui I, Hong X, Yang YF, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
    • 10b Ben HalimaT, Vandavasi JK, Shkoor M, Newman SG. ACS Catal. 2017; 7: 2176
    • 10c Masson-Makdissi J, Vandavasi JK, Newman SG. Org. Lett. 2018; 20: 4094
  • 11 Hie L, Fine NathelN. F, Hong X, Yang YF, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
  • 12 Ben HalimaT, Masson-Makdissi J, Newman SG. Angew. Chem. Int. Ed. 2018; 57: 12925
  • 13 Zheng Y.-L, Newman SG. ACS Catal. 2019; 9: 4426
  • 14 Zheng Y.-L, Newman SG. Angew. Chem. Int. Ed. 2019; 58: 18159
  • 15 Cook A, Prakash S, Zheng Y.-L, Newman SG. J. Am. Chem. Soc. 2020; 142: 8109

    • For related examples of nickel-catalyzed reductions of C–O and C–N bond-containing molecules, see:
    • 16a Alvarez-Bercedo P, Martin R. J. Am. Chem. Soc. 2010; 132: 17352
    • 16b Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946
    • 16c Yue H, Guo L, Lee S.-C, Liu X, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
    • 16d Simmons BJ, Hoffmann M, Hwang J, Jackl MK, Garg NK. Org. Lett. 2017; 19: 1910
  • 17 Zheng Y.-L, Xie P.-P, Daneshfar O, Houk KN, Hong X, Newman SG. Angew. Chem. Int. Ed. 2021; 60: 13476

    • For other key examples of Ni-catalyzed functionalization of methyl esters, see:
    • 18a Walker JA, Vickerman KL, Humke JN, Stanley LM. J. Am. Chem. Soc. 2017; 139: 10228
    • 18b Yue H, Zhu C, Rueping M. Org. Lett. 2018; 20: 385
    • 18c Okita T, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 3132
    • 18d Iyori Y, Takahashi K, Yamazaki K, Ano Y, Chatani N. Chem. Commun. 2019; 55: 13610
  • 19 Esterification Methods, Reactions, and Applications. Otera J, Nishikido J. Wiley-VCH; Weinheim: 2010
    • 20a Hie L, Fine NathelN. F, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 20b Hie L, Baker EL, Anthony SM, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129
    • 20c Weires NA, Caspi DD, Garg NK. ACS Catal. 2017; 7: 4381
    • 20d Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934
  • 21 Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 22a Isbrandt ES, Sullivan RJ, Newman SG. Angew. Chem. Int. Ed. 2019; 58: 7180
    • 22b Kashani SK, Jessiman JE, Newman SG. Org. Process Res. Dev. 2020; 24: 1948
  • 23 Newton JJ, Britton R, Friesen CM. J. Org. Chem. 2018; 83: 12784
  • 24 Grasa GA, Kissling RM, Nolan SP. Org. Lett. 2002; 4: 3583
  • 25 Typical Experimental Procedure and Characterization Data of 6 In a glovebox, an oven-dried (120 °C) screw-capped vial was charged with a magnetic stir bar, Ni(cod)2 (3.3 mg, 6 mol%), and dcype (5.9 mg, 7 mol%). Thoroughly degassed toluene (0.4 mL, 0.5 M) obtained from a solvent purification system was then added. Then, methyl 1-methylindole-6-carboxylate (0.2 mmol, 37.8 mg) and cyclopropylmethanol (0.3 mmol, 21.6 mg) were subsequently added. The vial was sealed with a Teflon-lined screw cap and shipped outside of the glovebox. The reaction was stirred in a pre-heated silicone oil bath at 130 °C for 2 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and filtered through a plug of silica gel. The crude mixture was concentrated and purified via column chromatography (hexanes/EtOAc = 8:1) to afford 6 as a brown solid (27.5 mg, 60%). 1H NMR (400 MHz, CDCl3): δ = 8.13 (s, 1 H), 7.85 (dd, J = 8.4, 1.6 Hz, 1 H), 7.65 (d, J = 8.4 Hz, 1 H), 7.20 (d, J = 3.2 Hz, 1 H), 6.53 (d, J = 2.8 Hz, 1 H), 4.20 (d, J = 7.2 Hz, 2 H), 3.86 (s, 3 H), 1.38–1.26 (m, 1 H), 0.70–0.59 (m, 2 H), 0.47–0.36 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 167.9, 136.1, 132.02, 131.95, 123.5, 120.4, 120.3, 111.7, 101.3, 69.4, 33.0, 10.0, 3.3. Accurate mass (EI): m/z calcd for C14H15NO2: 229.1097; found: 229.1062; spectral accuracy = 98.2%.
    • 26a Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
    • 26b Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
    • 26c Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508
    • 26d Liu X, Jia J, Rueping M. ACS Catal. 2017; 7: 4491
    • 26e Chatupheeraphat A, Liao HH, Srimontree W, Guo L, Minenkov Y, Poater A, Cavallo L, Rueping M. J. Am. Chem. Soc. 2018; 140: 3724
    • 26f Guo L, Chatupheeraphat A, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
    • 26g Chatupheeraphat A, Liao HH, Lee SC, Rueping M. Org. Lett. 2017; 19: 4255
    • 26h Yue H, Guo L, Liao HH, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
    • 26i Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
    • 26j Takise R, Isshiki R, Muto K, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
    • 26k Isshiki R, Kurosawa MB, Muto K, Yamaguchi J. J. Am. Chem. Soc. 2021; 143: 10333
    • 26l Matsushita K, Takise R, Muto K, Yamaguchi J. Sci. Adv. 2020; 6: eaba7614
    • 26m Iizumi K, Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. Synlett 2021; 32: 1555
    • 26n Ji C.-L, Xie P.-P, Hong X. Molecules 2018; 23: 2681
  • 27 Hong X, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 2017