Synthesis 2024; 56(07): 1097-1138
DOI: 10.1055/s-0042-1751509
short review
Emerging Trends in Glycoscience

Advances in the Synthesis of Spirocyclic Nucleosides

Sumit Kumar
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
,
Yousuf Khan
b   Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
c   National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, 1211, Switzerland
,
Aditi Arora
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
,
Manish Kumar
d   Department of Chemistry, Moti Lal Nehru College, University of Delhi, Delhi-110007, India
,
Pallavi Rungta
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
,
Brajendra K. Singh
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
,
Vivek K. Sharma
e   Department of Medicine, Mass Biologics of the University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
,
Sunil K. Singh
b   Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
› Author Affiliations
Sumit Kumar (SRF, File No.: 09/045(1798)/2020-EMR-I) and Aditi Arora (JRF, File No.: 09/0045(11270)/2021-EMR-I) have received awards from the Council of Scientific and Industrial Research (CSIR), New Delhi, India, and they are appreciative of the organization. We appreciate the Institute of Imminence at the University of Delhi for providing financial support to bolster research and development.


Dedicated to Late Professor Ashok K. Prasad, Department of Chemistry, University of Delhi, India.

Abstract

The nucleosides are the building blocks for nucleic acids and composed of a five-carbon sugar bearing either pyrimidine or purine nucleobase. The biological properties of nucleosides can be tailored by chemically modifying the five-carbon sugar to influence its sugar pucker. The spirocyclic scaffold is an indispensable scaffold in more than ten approved drugs, and its inherent three-dimensionality makes it an ideal modification to influence the sugar pucker and biological properties of nucleosides. However, the introduction of spirocyclic scaffold is often synthetically challenging due to increase in synthetic steps and stereocenters. The present review highlights the advances in synthetic methodologies developed during the past decades for accessing various members of the spiro-functionalized nucleoside family.

1 Introduction

2 C-1′-Spirocyclic Nucleosides

3 C-2′-Spirocyclic Nucleosides

4 C-3′-Spirocyclic Nucleosides

5 C-4′-Spirocyclic Nucleosides

6 Miscellaneous Spirocyclic Nucleosides

7 Conclusion and Future Perspectives



Publication History

Received: 29 July 2023

Accepted after revision: 08 September 2023

Article published online:
16 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discovery 2013; 12: 447
  • 2 Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Eur. J. Med. Chem. 2021; 214: 113233
  • 3 Galmarini CM, Mackey JR, Dumontet C. Leukemia 2001; 15: 875
  • 4 Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. J. Proteome Res. 2020; 19: 4690
  • 5 Thomson JM, Lamont IL. Front. Microbiol. 2019; 10
  • 6 Fung J, Lai C.-L, Seto W.-K, Yuen M.-F. J. Antimicrob. Chemother. 2011; 66: 2715
  • 7 Sierocki P, Gaillard K, Arellano Reyes RA, Donnart C, Lambert E, Grosse S, Arzel L, Tessier A, Guillemont J, Mathé-Allainmat M, Lebreton J. Org. Biomol. Chem. 2022; 20: 2715
  • 8 Sabat N, Ouarti A, Migianu-Griffoni E, Lecouvey M, Ferraris O, Gallier F, Peyrefitte C, Lubin-Germain N, Uziel J. Bioorg. Chem. 2022; 122: 105723
  • 9 de Clercq E. Acta Pharm. Sin. B 2012; 2: 535
  • 10 Huryn DM, Okabe M. Chem. Rev. 1992; 92: 1745
  • 11 De Clercq E, Field HJ. Br. J. Pharmacol. 2006; 147: 1
  • 12 Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H, Feldman RJ, Mitsuya H, George C, Barchi JJ. J. Am. Chem. Soc. 1998; 120: 2780
  • 13 Wengel J. Acc. Chem. Res. 1999; 32: 301
  • 14 Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC. N. Engl. J. Med. 2020; 383: 1813
  • 15 Mattelaer C.-A, Mattelaer H.-P, Rihon J, Froeyen M, Lescrinier E. J. Chem. Theory Comput. 2021; 17: 3814
  • 16 Roy V, Agrofoglio LA. Drug Discovery Today 2022; 27: 1945
  • 17 Yates MK, Seley-Radtke KL. Antiviral Res. 2019; 162: 5
  • 18 Moss GP. Pure Appl. Chem. 1999; 71: 531
  • 19 Haruyama H, Takayama T, Kinoshita T, Kondo M, Nakajima M, Haneishi T. J. Chem. Soc., Perkin Trans. 1 1991; 1637
  • 20 Nakajima M, Itoi K, Takamatsu Y, Kinoshita T, Okazaki T, Kawakubo K, Shindo M, Honma T, Tohjigamori M, Haneishi T. J. Antibiot. 1991; 44: 293
  • 21 Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martín-Quirós A, Caraco Y, Williams-Diaz A, Brown ML, Du J, Pedley A, Assaid C, Strizki J, Grobler JA, Shamsuddin HH, Tipping R, Wan H, Paschke A, Butterton JR, Johnson MG, De Anda C. N. Engl. J. Med. 2021; 386: 509
  • 22 Haneishi T, Nakajima M, Torikata A, Okazaki T, Tohjigamori M, Kawakubo K. US 4952234A, 1990
  • 23 Pachlatko JP, Zaehner HP. DE 4129616A1, 1992
  • 24 Haruki E, Kumazawa S, Yoshikawa N, Miyasaka K. JPH 04222589A, 1992
  • 25 Gregoriou M, Noble ME. M, Watson KA, Garman EF, Krülle TM, de la Fuente C, Fleet GW. J, Oikonomakos NG, Johnson LN. Protein Sci. 1998; 7: 915
  • 26 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 27 Talele TT. J. Med. Chem. 2020; 63: 13291
  • 28 Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. Drug Discovery Today 2020; 25: 1839
  • 29 Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150
  • 30 Yoshimura Y, Otter BA, Ueda T, Matsuda A. Chem. Pharm. Bull. 1992; 40: 1761
  • 31 Kittaka A, Tanaka H, Yamada N, Miyasaka T.-i. Tetrahedron Lett. 1996; 37: 2801
  • 32 Kittaka A, Asakura T, Kuze T, Tanaka H, Yamada N, Nakamura KT, Miyasaka T. J. Org. Chem. 1999; 64: 7081
  • 33 Kittaka A, Tanaka H, Odanaka Y, Ohnuki K, Yamaguchi K, Miyasaka T. J. Org. Chem. 1994; 59: 3636
  • 34 Babu BR, Keinicke L, Petersen M, Nielsen C, Wengel J. Org. Biomol. Chem. 2003; 1: 3514
  • 35 Babu BR, Keinicke L, Wengel J. Nucleosides, Nucleotides Nucleic Acids 2003; 22: 1313
  • 36 Li H, Yoo J.-C, Hong J.-H. Bull. Korean Chem. Soc. 2011; 32: 1146
  • 37 Jonckers TH, Lin T.-I, Buyck C, Lachau-Durand S, Vandyck K, Van Hoof S, Vandekerckhove LA, Hu L, Berke JM, Vijgen L, Dillen LL. A, Cummings MD, de Kock H, Nilsson M, Sund C, Rydegård C, Samuelsson B, Rosenquist A, Fanning G, Van Emelen K, Simmen K, Raboisson P. J. Med. Chem. 2010; 53: 8150
  • 38 Camarasa MJ, Perez-Perez MJ, San-Felix A, Balzarini J, De Clercq E. J. Med. Chem. 1992; 35: 2721
  • 39 Das K, Bauman JD, Rim AS, Dharia C, Clark AD. Jr, Camarasa M.-J, Balzarini J, Arnold E. J. Med. Chem. 2011; 54: 2727
  • 40 Paquette LA. Aust. J. Chem. 2004; 57: 7
  • 41 Dong S, Paquette LA. J. Org. Chem. 2006; 71: 1647
  • 42 Sharma VK, Kumar M, Sharma D, Olsen CE, Prasad AK. J. Org. Chem. 2014; 79: 8516
  • 43 Soengas RG, Da Silva G, Estévez JC. Molecules 2017; 22: 2028
  • 44 Kumar R, Kumar M, Kumar V, Kumar A, Haque N, Kumar R, Prasad AK. Synth. Commun. 2020; 50: 3369
  • 45 Soengas RG, Sandrina S. Mini-Rev. Med. Chem. 2012; 12: 1485
  • 46 Carbohydrate-spiro-heterocycles. In Topics in Heterocyclic Chemistry, Vol. 57. Somsák L. Springer; Switzerland: 2019
  • 47 Renard A, Kotera M, Brochier MC, Lhomme J. Eur. J. Org. Chem. 2000; 2000: 1831
  • 48 Renard A, Lhomme J, Kotera M. J. Org. Chem. 2002; 67: 1302
  • 49 Dell’Isola A, McLachlan MM, Neuman BW, Al-Mullah HM, Binks AW, Elvidge W, Shankland K, Cobb AJ. Chem. Eur. J. 2014; 20: 11685
  • 50 Perali RS, Mandava S, Bandi R. Tetrahedron 2011; 67: 4031
  • 51 Gasch C, Pradera MA, Salameh BA, Molina JL, Fuentes J. Tetrahedron: Asymmetry 2001; 12: 1267
  • 52 Chatgilialoglu C, Ferreri C, Gimisis T, Roberti M, Balzarini J, De Clercq E. Nucleosides, Nucleotides Nucleic Acids 2004; 23: 1565
  • 53 Itoh Y, Haraguchi K, Tanaka H, Gen E, Miyasaka T. J. Org. Chem. 1995; 60: 656
  • 54 Taillefumier C, Thielges S, Chapleur Y. Tetrahedron 2004; 60: 2213
  • 55 Maza S, López Ó, Martos S, Maya I, Fernández-Bolaños JG. Eur. J. Org. Chem. 2009; 2009: 5239
  • 56 Gasch C, Salameh BA, Pradera MA, Fuentes J. Tetrahedron Lett. 2001; 42: 8615
  • 57 Cobb AJ, Dell’Isola A, Abdulsattar BO, McLachlan MM, Neuman BW, Müller C, Shankland K, Al-Mulla HM, Binks AW, Elvidge W. New J. Chem. 2018; 42: 18363
  • 58 Sayago FJ, Pradera MA, Gasch C, Fuentes J. Tetrahedron 2006; 62: 915
  • 59 Nencka R, Hřebabecký H, Dračínský M. Collect. Czech. Chem. Commun. 2010; 75: 1259
  • 60 Jonckers TH, Vandyck K, Vandekerckhove L, Hu L, Tahri A, Van Hoof S, Lin T.-I, Vijgen L, Berke JM, Lachau-Durand S, Stoops B, Leclercq L, Fanning G, Samuelsson B, Nilsson M, Rosenquist Å, Simmen K, Raboisson P. J. Med. Chem. 2014; 57: 1836
  • 61 Du J, Chun B.-K, Mosley RT, Bansal S, Bao H, Espiritu C, Lam AM, Murakami E, Niu C, Micolochick Steuer HM, Furman PA, Sofia MJ. J. Med. Chem. 2014; 57: 1826
  • 62 Kiritsis C, Manta S, Dimopoulou A, Parmenopoulou V, Gkizis P, Balzarini J, Komiotis D. Carbohydr. Res. 2014; 383: 50
  • 63 Tronchet JM, Kovacs I, Seman M, Dilda P, Clercq ED, Balzarini J. Nucleosides, Nucleotides Nucleic Acids 2000; 19: 775
  • 64 Nielsen P, Larsen K, Wengel J. Acta Chem. Scand. 1996; 50: 1030
  • 65 Robins MJ, Samano V, Johnson MD. J. Org. Chem. 1990; 55: 410
  • 66 Lobatón E, Camarasa M.-J, Velázquez S. Synlett 2000; 1312
  • 67 Hussain, E. M. Ibn al-Haitham J. Pure Appl. Sci. 2009, 22 (4); https://jih.uobaghdad.edu.iq/index.php/j/article/view/1146 (accessed Oct 11, 2023).
  • 68 Dushing MP, Ramana C. Tetrahedron Lett. 2011; 52: 4627
  • 69 Paquette LA, Owen DR, Bibart RT, Seekamp CK. Org. Lett. 2001; 3: 4043
  • 70 Hartung RE, Paquette LA. Synthesis 2005; 3209
  • 71 Roy A, Achari B, Mandal SB. Tetrahedron Lett. 2006; 47: 3875
  • 72 Maity JK, Ghosh R, Drew MG, Achari B, Mandal SB. J. Org. Chem. 2008; 73: 4305
  • 73 Maity JK, Achari B, Drew MG, Mandal SB. Synthesis 2010; 2533
  • 74 Sharma VK, Kumar M, Olsen CE, Prasad AK. J. Org. Chem. 2014; 79: 6336
  • 75 Youssefyeh RD, Verheyden JP, Moffatt JG. J. Org. Chem. 1979; 44: 1301
  • 76 Kumar M, Sharma VK, Kumar R, Prasad AK. Carbohydr. Res. 2015; 417: 19
  • 77 Kumar R, Kumar M, Singh A, Singh N, Maity J, Prasad AK. Carbohydr. Res. 2017; 445: 88
  • 78 Rungta P, Mangla P, Khatri V, Maity J, Prasad AK. Biocatal. Biotransform. 2018; 36: 458
  • 79 Rungta P, Kumar M, Mangla P, Kumar S, Prasad AK. New J. Chem. 2021; 45: 1609
  • 80 Rungta P, Mangla P, Maikhuri VK, Singh SK, Prasad AK. ChemistrySelect 2017; 2: 7808
  • 81 Verhoeven J, De Vleeschouwer F, Kong H, Van Hecke K, Pande V, Sun W, Vos A, Wu T, Meerpoel L, Thuring JW. Chem. Eur. J. 2019; 25: 15419
  • 82 Verhoeven J, Kong H, Zhao Y, Wang W, Pande V, Brambilla M, Van Hecke K, Meerpoel L, Thuring JW, Verniest G. Synlett 2021; 32: 892
  • 83 Tripathi S, Roy BG, Drew MG, Achari B, Mandal SB. J. Org. Chem. 2007; 72: 7427
  • 84 Dang S.-f, Sun J.-b, Xu X.-x, Pei W, Wu J.-c. Chem. Res. Chin. Univ. 2008; 24: 473
  • 85 Hanessian S, Schroeder BR, Giacometti RD, Merner BL, Østergaard M, Swayze EE, Seth PP. Angew. Chem. Int. Ed. 2012; 51: 11242
  • 86 Sun J.-b, Liu R.-w, Xuan L.-l, Leng W.-c, Wu J.-c. Chem. Res. Chin. Univ. 2013; 29: 473
  • 87 Osawa T, Kawaguchi M, Jang Y.-J, Ito Y, Hari Y. Bioorg. Med. Chem. 2021; 31: 115966
  • 88 Wendeborn S, Binot G, Nina M, Winkler T. Synlett 2002; 1683
  • 89 Jouffroy L, Verhoeven J, Brambilla M, Verniest G, Kong H, Zhao Y, Wang W, Meerpoel L, Thuring JW, Winne JM. Org. Lett. 2021; 23: 8828
  • 90 Neouchy Z, Verhoeven J, Kong H, Zhao Y, Wang W, Brambilla M, Hecke KV, Meerpoel L, Thuring JW, Verniest G, Winne J. J. Org. Chem. 2021; 86: 17344
  • 91 Köllmann C, Wiechert SM, Jones PG, Pietschmann T, Werz DB. Org. Lett. 2019; 21: 6966
  • 92 Dang Q, Zhang Z, He S, Liu Y, Chen T, Bogen S, Girijavallabhan V, Olsen DB, Meinke PT. Tetrahedron Lett. 2014; 55: 4407
  • 93 Stathi A, Mamais M, Chrysina ED, Gimisis T. Molecules 2019; 24: 2327
  • 94 Fischer R, Hýrošová E, Druckova A, Fišera L, Hametner C, Cyrański MK. Synlett 2003; 2364
  • 95 Gadthula S, Rawal RK, Sharon A, Wu D, Korba B, Chu CK. Bioorg. Med. Chem. Lett. 2011; 21: 3982
  • 96 Kumamoto H, Fukano M, Imoto S, Kohgo S, Odanaka Y, Amano M, Kuwata-Higashi N, Mitsuya H, Haraguchi K, Fukuhara K. Nucleosides, Nucleotides Nucleic Acids 2017; 36: 463
  • 97 Singh US, Chu CK. Nucleosides, Nucleotides Nucleic Acids 2020; 39: 52
  • 98 Bondada L, Gumina G, Nair R, Ning XH, Schinazi RF, Chu CK. Org. Lett. 2004; 6: 2531
  • 99 Singha K, Roy A, Dutta PK, Tripathi S, Sahabuddin S, Achari B, Mandal SB. J. Org. Chem. 2004; 69: 6507
  • 100 Sahabuddin S, Roy A, Drew MG, Roy BG, Achari B, Mandal SB. J. Org. Chem. 2006; 71: 5980