Subscribe to RSS
DOI: 10.1055/s-0042-1751512
Visible-Light-Enabled Radical Alkynylborylation of Activated Alkenes
Funding: National Key Research and Development Program of China (2021YFC2101901); National Natural Science Foundation of China (22202060, 22122103, 21971108); Fundamental Research Funds for the Central Universities (020514380304, 020514380232, 020514380272); Funding Plan of Key Scientific Research Project of Colleges and Universities in Henan Province (23A150029); Doctoral Scientific Research Start-up Foundation from Henan University of Technology (2021BS080).
Abstract
A photoredox-catalyzed protocol for performing radical difunctionalization of alkenes using N-heterocyclic carbene (NHC) boranes and alkynyl bromines is described. The alkynylborylation difunctionalization reaction involves photoredox generation of boryl radical, with subsequent radical addition to the double bond followed by the capture of alkynyl bromide to form a C–C bond. This method features mild reaction conditions, remarkable chemoselectivity, broad substrate scope and good to excellent yields (up to 89%). The modification of coumarin derivatives indicates that this approach can provide a useful route for the synthesis of complex alkynylborylated products.
Key words
photoredox catalysis - N-heterocyclic carbene boranes - alkynyl bromides - radical reaction - difunctionalizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751512.
- Supporting Information
Publication History
Received: 11 August 2023
Accepted after revision: 20 September 2023
Article published online:
31 October 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Wiley-VCH; Weinheim: 2011
- 1b Dembitsky VM, Quntar AA. A. A, Srebnik M. Chem. Rev. 2011; 111: 209
- 1c Brooks WL. A, Sumerlin BS. Chem. Rev. 2016; 116: 1375
- 1d Fernandes GF. S, Denny WA, Dos Santos JL. Eur. J. Med. Chem. 2019; 179: 791
- 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2b Han F. Chem. Soc. Rev. 2013; 42: 5270
- 2c Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2013; 52: 7362
- 2d Synthesis and Applications of Organoboron Compounds. In Topics in Organometallic Chemistry, Vol. 49. Fernández E, Whiting A. Springer; Switzerland: 2015
- 3a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 3b Hemming D, Fritzemeier R, Westcott SA, Santos WL, Steel PG. Chem. Soc. Rev. 2018; 47: 7477
- 3c Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
- 3d Badir SO, Molander GA. Chem 2020; 6: 1327
- 3e Yang C, Jia X. Chin. J. Org. Chem. 2021; 41: 2280
- 3f Liu Y, Liu H, Liu X, Chen Z. Catalysts 2023; 13: 1056
- 4a Entwistle C, Marder TB. Angew. Chem. Int. Ed. 2002; 41: 2927
- 4b Jäkle F. Chem. Rev. 2010; 110: 3985
- 4c Mellerupab SK, Wang S. Chem. Soc. Rev. 2019; 48: 3537
- 5a Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 5b Tian Y, Guo X, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
- 5c Taniguchi T. Chem. Soc. Rev. 2021; 50: 8995
- 5d Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
- 5e Friesea FW, Studer A. Chem. Sci. 2019; 10: 8503
- 5f Zhong M, Gagné Y, Hope TO, Pannecoucke X, Frenette M, Jubault P, Poisson T. Angew. Chem. Int. Ed. 2021; 60: 14498
- 5g Peng T.-Y, Zhang F.-L, Wang Y.-F. Acc. Chem. Res. 2023; 56: 169
- 6a Ren S.-C, Zhang F.-L, Qi J, Huang Y.-S, Xu A.-Q, Yan H.-Y, Wang Y.-F. J. Am. Chem. Soc. 2017; 139: 6050
- 6b Curran DP, Taniguchi T. Chem. Eur. J. 2017; 23: 5404
- 6c Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2018; 57: 9485
- 6d Shimoi M, Maeda K, Geib SJ, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2019; 58: 6357
- 6e Dai W, McFadden TR, Curran DP, Früchtl HA, Walton JC. J. Am. Chem. Soc. 2018; 140: 15868
- 6f Ren S.-C, Zhang F.-L, Xu A.-Q, Yang Y, Zheng M, Zhou X, Fu Y, Wang Y.-F. Nat. Commun. 2019; 10: 1934
- 6g Liu X, Lin E, Chen G, Li J, Liu P, Wang H. Org. Lett. 2019; 21: 8454
- 6h Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2019; 141: 12355
- 6i Wang K, Zhuang Z, Ti H, Wu P, Zhao X, Wang H. Chin. Chem. Lett. 2020; 31: 1564
- 7a Zhou N, Yuan X, Zhao Y, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 3990
- 7b Zhu C, Dong J, Liu X, Gao L, Zhao Y, Xie J, Li S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 12817
- 7c Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
- 7d Xia P, Song D, Ye Z, Hu Y, Xiao J, Xiang H, Chen X, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
- 7e Qi J, Zhang F.-L, Jin J.-K, Zhao Q, Li B, Liu L.-X, Wang Y.-F. Angew. Chem. Int. Ed. 2020; 59: 12876
- 7f Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2020; 142: 6261
- 7g Zhu C, Gao S, Li W, Zhu C. Chem. Commun. 2020; 56: 15647
- 7h Li G, Huang G, Sun R, Curran DP, Dai W. Org. Lett. 2021; 23: 4353
- 7i Miao Y, Li X, Pan Q, Ma Y, Kang J, Ma Y, Liu Z, Chen X. Green Chem. 2022; 24: 7113
- 7j Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Chem. Commun. 2022; 58: 8380
- 8a Ji C.-L, Han J, Li T, Zhao C.-G, Zhu C, Xie J. Nat. Catal. 2022; 5: 1098
- 8b Fang Q.-Y, Han J, Qin M, Li W, Zhu C, Xie J. Angew. Chem. Int. Ed. 2023; 62: e202305121
- 8c Han J, Han J, Chen S, Zhong T, He Y, Yang X, Wang G, Zhu C, Xie J. Nat. Synth. 2022; 1: 475
- 8d Li N, Li J, Qin M, Li J, Han J, Zhu C, Li W, Xie J. Nat. Commun. 2022; 13: 4424
- 8e Wang S, Li T, Gu C, Han J, Zhao C.-G, Zhu C, Tan H, Xie J. Nat. Commun. 2022; 13: 2432
- 8f Li Y, Shao Q, He H, Zhu C, Xue X, Xie J. Nat. Commun. 2022; 13: 10
- 8g Wu X, Han J, Xia S, Li W, Zhu C, Xie J. CCS Chem. 2021; 3: 2581
- 8h Ning Y, Wang S, Li M, Han J, Zhu C, Xie J. Nat. Commun. 2021; 12: 4637
- 8i Zhang M, Xie J, Zhu C. Nature Commun. 2018; 9: 3517
- 8j Xu W, Ma J, Yuan X.-A, Dai J, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 10357
- 9a Nolan KA, Zhao H, Faulder PF, Frenkel AD, Timson DJ, Siegel D, Ross D, Burke TR. Jr, Stratford IJ, Bryce RA. J. Med. Chem. 2007; 50: 6316
- 9b Rawat A, Reddy AV. B. Eur. J. Med. Chem. Rep. 2022; 5: 100038
- 10 Frogneux X, Hippolyte L, Mercier D, Portehault D, Chanéac C, Sanchez C, Marcus P, Ribot F, Fensterbank L, Carenco S. Chem. Eur. J. 2019; 25: 11481
- 11 Miao Y, Pan Q, Liu Z, Chen X. New J. Chem. 2022; 46: 19091
- 12a Brahmi MM, Monot J, Desage-El Murr M, Curran DP, Fensterbank L, Lacôte E, Malacria M. J. Org. Chem. 2010; 75: 6983
- 12b Solovyev A, Ueng S.-H, Monot J, Fensterbank L, Malacria M, Lacôte E, Curran DP. Org. Lett. 2010; 12: 2998
- 12c Kawamoto T, Geib SJ, Curran DP. J. Am. Chem. Soc. 2015; 137: 8617
- 13 Gao Y, Wu G, Zhou Q, Wang J. Angew. Chem. Int. Ed. 2018; 57: 2716
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews and examples, see:
Thermal conditions, selected examples:
Photoredox conditions, selected examples: