Subscribe to RSS
DOI: 10.1055/s-0042-1751517
Synthesis of the Hexasaccharide Repeating Unit Corresponding to the Cell Wall O-Antigen of Providencia alcalifaciens O9:H8 Strain
A.R. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support in the form of a senior research fellowship. This work was supported by the Science and Engineering Research Board (SERB), New Delhi (Project No. CRG/2019/000352 dated 23.01.2020) (A.K.M.).
Abstract
A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Providencia alcalifaciens O9:H8 strain was achieved in very good yield by applying a stereo- and regioselective [4+2] block glycosylation strategy. The tetrasaccharide acceptor and disaccharide donor were synthesized by sequential stereo- and regioselective glycosylations. Thioglycoside and glycosyl trichloroacetimidate derivatives were used as glycosyl donors in the synthetic strategy. The glycosylation steps were high-yielding and gave satisfactory stereochemical outcomes.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751517. Included are copies of 1D and 2D NMR spectra of compounds 1 and 8–15.
- Supporting Information
Publication History
Received: 25 August 2023
Accepted after revision: 04 October 2023
Article published online:
20 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Graves NS. Primary Care 2013; 40: 727
- 1b Grace D. Int. J. Environ. Res. Public Health 2015; 12: 10490
- 1c Revelas A. Southern African J. Epidemiol. Infect. 2012; 27: 156
- 2a Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Nat. Rev. Microbiol. 2015; 13: 269
- 2b Sheerin NS, Glover EK. Medicine 2019; 47: 546
- 3a Sur D, Ramamurthy T, Deen J, Bhattacharya SK. Indian J. Med. Res. 2004; 120: 454
- 3b Niyogi SK. J. Microbiol. 2005; 43: 133
- 4a Wotzka SY, Nguyen BD, Hardt W.-D. Cell Host Microbe 2017; 21: 443
- 4b Eng S.-K, Pusparajah P, Mutalib N.-SA, Ser H.-L, Chan KG, Lee L.-H. Front. Life Sci. 2015; 8: 284
- 5 Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J. Nat. Rev. Disease Primers 2018; 4: 1
- 6 Robins-Browne RM, Hartland EL. J. Gastroenterol. Hepatol. 2002; 17: 467
- 7a Albert MJ, Faruque AS. G, Mahalanabis D. J. Clin. Microbiol. 1998; 36: 1433
- 7b Shah MM, Odoyo E, Ichinose Y. Am. J. Trop. Med. Hyg. 2019; 101: 290
- 8a Johnson JR. Clin. Microbiol. Rev. 1991; 4: 80
- 8b Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Microorganisms 2022; 10: 1425 https://doi.org/10.3390/microorganisms10071425
- 9a Rajni E, Jain A, Garg VK, Sharma R, Vohra R, Jain SS. Indian J. Crit. Care Med. 2022; 26: 446
- 9b O’Hara CM, Brenner FW, Miller JM. Clin. Microbiol. Rev. 2000; 13: 534
- 10 Yoh M, Matsuyama J, Ohnishi M, Takagi K, Miyagi H, Mori K, Park K.-S, Ono T, Honda T. J. Med. Microbiol. 2005; 54: 1077
- 12a Abdallah M, Balshi A. New Microbes New Infect. 2018; 25: 16
- 12b Breijyeh Z, Jubeh B, Karaman R. Molecules 2020; 25: 1340
- 13a Rohokale R, Guo Z. ACS Infect. Dis. 2023; 9: 178
- 13b Bröker M, Berti F, Schneider J, Vojtek I. Vaccine 2017; 35: 3286
- 13c Berti F, Adamo R. Chem. Soc. Rev. 2018; 47: 9015
- 14a Kurmasheva N, Vorobiev V, Sharipova M, Efremova T, Mardanova A. Biomed Res. Int. 2018; 3589135
- 14b Munford RS. Infect. Immun. 2008; 76: 454
- 15a Morelli L, Poletti L, Lay L. Eur. J. Org. Chem. 2011; 5723
- 15b Pozsgay V. Curr. Top. Med. Chem. 2008; 8: 126
- 16a Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
- 16b Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611
- 16c Panza M, Pistorio SG, Stine KJ, Demchenko AV. Chem. Rev. 2018; 118: 8105
- 16d Seeberger PH, Haase W.-C. Chem. Rev. 2000; 100: 4349
- 16e Krasnova L, Wong C.-H. J. Am. Chem. Soc. 2019; 141: 3735
- 17a Adamo R. Glycoconjugate J. 2021; 38: 397
- 17b Del Bino L, Østerlid KE, Wu D.-Y, Nonne F, Romano MR, Codée J, Adamo R. Chem. Rev. 2022; 122: 15672
- 17c Mettu R, Chen C.-Y, Wu C.-Y. J. Biomed. Sci. 2020; 27: 9
- 17d Seeberger PH. Chem. Rev. 2021; 121: 3598
- 17e Lisboa MP, Khan N, Martin C, Seeberger PH. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 11063
- 18 Ovchinnikova OG, Kocharova NA, Shashkov AS, Arbatsky NP, Rozalski A, Knirel YA. Carbohydr. Res. 2011; 346: 644
- 19 Tamborrini M, Werz DB, Frey J, Pluschke G, Seeberger PH. Angew. Chem. Int. Ed. 2006; 45: 6581
- 20a Manabe S. Heterocycles 2021; 102: 177
- 20b Nigudkar SS, Demchenko AV. Chem. Sci. 2015; 6: 2687
- 20c Takahashi D, Toshima K. Compr. Glycosci. 2021; 2: 365
- 20d Mukherjee MM, Ghosh R, Hanover JA. Front. Mol. Biosci. 2022; 896187
- 21a Veeneman GH, van Leeuwen SH, van Boom JH. Tetrahedron Lett. 1990; 31: 1331
- 21b Konradsson P, Udodong UE, Fraser-Reid B. Tetrahedron Lett. 1990; 31: 4313
- 22a Chakraborti AK, Gulhane R. Chem. Commun. 2003; 1896
- 22b Chakraborti A. K., Gulhane R.; Indian Patent 266/DEL/2003, Grant No. 248506.
- 23 Mukhopadhyay B, Maurer SV, Rudolph N, van Well RM, Russell DA, Field RA. J. Org. Chem. 2005; 70: 9059
- 24 Agnihotri G, Misra AK. Tetrahedron Lett. 2006; 47: 3653
- 25 Kanie O, Ito Y, Ogawa T. J. Am. Chem. Soc. 1994; 116: 12073
- 26 Mukherjee C, Misra AK. Tetrahedron: Asymmetry 2008; 19: 2746
- 27 Gucchait A, Misra AK. Org. Biomol. Chem. 2019; 17: 4605
- 28 Misra AK, Roy N. J. Carbohydr. Chem. 1998; 17: 1047
- 29 Wang Z, Zhou L, El-Boubbou K, Ye X.-s, Huang X. J. Org. Chem. 2007; 72: 6409
- 30 Deng S, Yu B, Xie J, Hui Y. J. Org. Chem. 1999; 64: 7265
- 31 Sato S, Mori M, Ito Y, Ogawa T. Carbohydr. Res. 1986; 155: C6
- 32 Gucchait A, Misra AK. Org. Biomol. Chem. 2019; 17: 4605
- 33 Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
- 34 Madhusudan SK, Agnihotri G, Negi DS, Misra AK. Carbohydr. Res. 2005; 340: 1373
- 35 Yule JE, Wong TC, Gandhi SS, Qiu D, Riopel MA, Rao Koganty K. Tetrahedron Lett. 1995; 36: 6839
- 36 Shangguan N, Katukojvala S, Greenberg R, Williams LJ. J. Am. Chem. Soc. 2003; 125: 7754
- 37 Santra A, Ghosh T, Misra AK. Beilstein J. Org. Chem. 2013; 9: 74