RSS-Feed abonnieren
DOI: 10.1055/s-0042-1751534
Recent Advances in Photoinduced Oxidative Cleavage of Alkenes
Funding was provided through the generous start-up funds from New York University, the American Chemical Society Petroleum Research Fund (665501-DNI1), and the National Institute of General Medical Sciences of the National Institutes of Health (1R35GM150777-01).
Abstract
Oxidative cleavage of alkenes leading to valuable carbonyl derivatives is a fundamental transformation in synthetic chemistry. In particular, ozonolysis is the mainstream method for the oxidative cleavage of alkenes that has been widely implemented in the synthesis of natural products and pharmaceutically relevant compounds. However, due to the toxicity and explosive nature of ozone, alternative approaches employing transition metals and enzymes in the presence of oxygen and/or strong oxidants have been developed. These protocols are often conducted under harsh reaction conditions that limit the substrate scope. Photochemical approaches can provide milder and more practical alternatives for this synthetically useful transformation. In this review, we outline recent visible-light-promoted oxidative cleavage reactions that involve photocatalytic activation of oxygen via electron transfer and energy transfer. Also, an emerging field featuring visible-light-promoted oxidative cleavage under anaerobic conditions is discussed. The methods highlighted in this review represent a transformative step toward more sustainable and efficient strategies for the oxidative cleavage of alkenes.
1 Introduction
2 Photochemical Methods for Oxidative Cleavage of Alkenes under Aerobic Conditions
2.1 Transition-Metal-Catalyzed Oxidative Cleavage of Alkenes under Visible Light
2.2 Photopromoted Organocatalyzed Oxidative Cleavage of Alkenes
2.3 Oxidative Cleavage of Alkenes with Molecular Iodine under Visible Light
2.4 Polymer-Catalyzed Oxidative Cleavage under Visible Light Irradiation
2.5 Oxidative Cleavage via Direct Visible Light Excitation with Molecular Oxygen
3 Anaerobic Oxidative Cleavage of Alkenes under Visible Light
4 Conclusion
Key words
oxidative cleavage - alkenes - ozonolysis - nitroarenes - photochemistry - anaerobic - visible light - aerobicPublikationsverlauf
Eingereicht: 30. Oktober 2023
Angenommen nach Revision: 14. November 2023
Artikel online veröffentlicht:
11. Dezember 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000
- 2 Rubin MB. Bull. Hist. Chem. 2001; 26: 40
- 3 Schönbein CF. Ann. Phys. (Berlin, Ger.) 1840; 126: 616
- 4 Schönbein CF. Br. Assoc. Adv. Sci., Rep. 1840; 209 ; available at www.biodiversitylibrary.org
- 5 Harries CD. Justus Liebigs Ann. Chem. 1905; 343: 311
- 6a Harries C. Über die Einwirkung des Ozons auf organische Verbindungen. In Untersuchungen über das Ozon und seine Einwirkung auf organische Verbindungen (1903–1916). Springer; Berlin: 1916: 340-342
- 6b Harries CD. Justus Liebigs Ann. Chem. 1912; 390: 235
- 7 Criegee R, Blust G, Zinke H. Chem. Ber. 1954; 87: 766
- 8 Story PR, Bishop CE, Burgess JR, Murray R, Youssefyeh R. J. Am. Chem. Soc. 1968; 90: 1907
- 9 Bauld NL, Thompson JA, Hudson CE, Bailey PS. J. Am. Chem. Soc. 1968; 90: 1822
- 10 Story PR, Murray R, Youssefyeh R. J. Am. Chem. Soc. 1966; 88: 3144
- 11 Murray R, Youssefyeh R, Story PR. J. Am. Chem. Soc. 1966; 88: 3143
- 12 Criegee R, Wenner G. Justus Liebigs Ann. Chem. 1949; 564: 9
- 13 Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
- 14 Criegee R. Angew. Chem., Int. Ed. Engl. 1975; 14: 745
- 15 Criegee R, Korber H, Bailey P. Adv. Chem. Ser. 1972; 112: 23
- 16 Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Angew. Chem. Int. Ed. 2021; 60: 15138
- 17a Van Ornum SG, Champeau RM, Pariza R. Chem. Rev. 2006; 106: 2990
- 17b Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH. B. Chem. Rev. 2006; 106: 2943
- 18a Avery MA, Chong WK. M, Jennings-White C. J. Am. Chem. Soc. 1992; 114: 974
- 18b Shen W, Coburn CA, Bornmann WG, Danishefsky SJ. J. Org. Chem. 1993; 58: 611
- 19 Fisher TJ, Dussault PH. Tetrahedron 2017; 73: 4233
- 20 Hida T, Kikuchi J, Kakinuma M, Nogusa H. Org. Process Res. Dev. 2010; 14: 1485
- 21 Irfan M, Glasnov TN, Kappe CO. Org. Lett. 2011; 13: 984
- 22 Roydhouse MD, Ghaini A, Constantinou A, Cantú-Pérez A, Motherwell WB, Gavriilidis A. Org. Process Res. Dev. 2011; 15: 989
- 23 Pappo R, Allen JD, Lemieux R, Johnson W. J. Org. Chem. 1956; 21: 478
- 24 Travis BR, Narayan RS, Borhan B. J. Am. Chem. Soc. 2002; 124: 3824
- 25 Urgoitia G, SanMartin R, Herrero MT, Dominguez E. ACS Catal. 2017; 7: 3050
- 26 Jefford CW. Chem. Soc. Rev. 1993; 22: 59
- 27 Spannring P, Bruijnincx PC, Weckhuysen BM, Gebbink RJ. K. Catal. Sci. Technol. 2014; 4: 2182
- 28 Rajagopalan A, Lara M, Kroutil W. Adv. Synth. Catal. 2013; 355: 3321
- 29 Zhang Y, Hatami N, Lange NS, Ronge E, Schilling W, Jooss C, Das S. Green Chem. 2020; 22: 4516
- 30 Lara M, Mutti FG, Glueck SM, Kroutil W. J. Am. Chem. Soc. 2009; 131: 5368
- 31 Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJ, Xiao J. J. Am. Chem. Soc. 2021; 143: 10005
- 32 Xie P, Xue C, Luo J, Shi S, Du D. Green Chem. 2021; 23: 5936
- 33 Teders M, Henkel C, Anhäuser L, Strieth-Kalthoff F, Gómez-Suárez A, Kleinmans R, Kahnt A, Rentmeister A, Guldi D, Glorius F. Nat. Chem. 2018; 10: 981
- 34 Shih Y.-L, Wu Y.-K, Hyodo M, Ryu I. J. Org. Chem. 2023; 88: 6548
- 35 Smith AM, Nie S. Acc. Chem. Res. 2010; 43: 190
- 36 Zrazhevskiy P, Sena M, Gao X. Chem. Soc. Rev. 2010; 39: 4326
- 37 Kamat PV, Tvrdy K, Baker DR, Radich EJ. Chem. Rev. 2010; 110: 6664
- 38 Li J, Zhao J, Ma C, Yu Z, Zhu H, Yun L, Meng Q. ChemSusChem 2021; 14: 4985
- 39 Firoozi S, Hosseini-Sarvari M. Eur. J. Org. Chem. 2020; 2020: 3834
- 40 Fan Q, Zhang H, Liu D, Yan C, Zhu H, Xie Z, Le Z. J. Org. Chem. 2023; 88: 7391
- 41 Murthy RS, Bio M, You Y. Tetrahedron Lett. 2009; 50: 1041
- 42 Deng Y, Wei XJ, Wang H, Sun Y, Noël T, Wang X. Angew. Chem. Int. Ed. 2017; 56: 832
- 43 Fernandes RA, Kumar P, Bhowmik A, Gorve DA. Org. Lett. 2022; 24: 3435
- 44 Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P. Tetrahedron Lett. 2021; 80: 153321
- 45 Chen Y.-X, He J.-T, Wu M.-C, Liu Z.-L, Tang K, Xia P.-J, Chen K, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2022; 24: 3920
- 46 Shee M, Singh NP. Adv. Synth. Catal. 2022; 364: 2032
- 47 Fujiya A, Kariya A, Nobuta T, Tada N, Miura T, Itoh A. Synlett 2014; 25: 884
- 48 Hirashima S.-i, Kudo Y, Nobuta T, Tada N, Itoh A. Tetrahedron Lett. 2009; 50: 4328
- 49 Ayed C, da Silva LC, Wang D, Zhang KA. J. Mater. Chem. A 2018; 6: 22145
- 50 Li W, Li S, Luo L, Ge Y, Xu J, Zheng X, Yuan M, Li R, Chen H, Fu H. Green Chem. 2021; 23: 3649
- 51 Xu J, Zhang Y, Yue X, Huo J, Xiong D, Zhang P. Green Chem. 2021; 23: 5549
- 52 Buchi G, Ayer D. J. Am. Chem. Soc. 1956; 78: 689
- 53 Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. J. Am. Chem. Soc. 2022; 144: 15437
- 54 Glushkov V, Schemyakina D, Zhukova N. Russ. J. Org. Chem. 2019; 55: 1735
- 55 Khelifi I, Naret T, Renko D, Hamze A, Bernadat G, Bignon J, Lenoir C, Dubois J, Brion J.-D, Provot O. Eur. J. Med. Chem. 2017; 127: 1025
- 56 Paolillo JM, Duke AD, Gogarnoiu ES, Wise DE, Parasram M. J. Am. Chem. Soc. 2023; 145: 2794
- 57 Mitchell J, Hussain W, Bansode A, O’Connor R, Wise D, Choe M, Parasram M. Org. Lett. 2023; 25: 6517
- 58 Ruffoni A, Hampton C, Simonetti M, Leonori D. Nature 2022; 610: 81
- 59 Elfert J, Bhunia A, Daniliuc CG, Studer A. ACS Catal. 2023; 13: 6704
- 60 Kobus-Bartoszewicz D, Stecko S. Adv. Synth. Catal. 2023; 365: 1224
- 61 Zhang Z, Gevorgyan V. Angew. Chem. Int. Ed. 2023; 62: e202311848
- 62 Göttemann L, Wiesler S, Sarpong R. Chem. Sci. 2023; in press
Also available as: