Synthesis 2024; 56(10): 1648-1656
DOI: 10.1055/s-0042-1751559
paper

Convenient Synthesis of Hexa- and Pentasaccharide Repeating Units Corresponding to the O-Polysaccharides of Acinetobacter baumannii O7 and Acinetobacter baumannii O10 Strains

Samim Sahaji
,
Puja Bag
,
Anup Kumar Misra
S.S. thanks the University Grants Commission (UGC-MANF), India for a senior research fellowship. P.B. thanks University Grants Commission, India for a junior research fellowship. This work was supported by the Bose Institute, Kolkata (A.K.M.).


Abstract

The synthesis of the hexa- and pentasaccharide repeating units of the cell wall O-polysaccharides of Acinetobacter baumannii O7 and O10 strains, respectively, has been achieved in very good yield using [4+2] and [4+1] block glycosylation strategies. The p-methoxybenzyl (PMB) group was used as an in situ removable protecting group, which was removed after glycosylation in the same pot by tuning the reaction condition. A challenging β-l-rhamnopyranosyl linkage was constructed using ‘armed-disarmed glycosylation’ conditions by the influence of a remotely located, H-bond mediating, picolinoyl group in the glycosyl donor. A d-mannosamine intermediate was prepared from d-glucose using minimum reaction steps. The hexa- and pentasaccharide were achieved as their p-methoxyphenyl (PMP) glycosides.

Supporting Information



Publikationsverlauf

Eingereicht: 01. Januar 2024

Angenommen nach Revision: 26. Januar 2024

Artikel online veröffentlicht:
14. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Khan HA, Baig FK, Mehboob R. Asian Pac. J. Trop. Biomed. 2017; 7: 478
    • 1b Larsen EN, Gavin N, Marsh N, Rickard CM, Runnegar N, Webster J. Infect. Control Hosp. Epidemiol. 2019; 40: 1100
    • 2a Abalkhail A, Alslamah T. Vaccines (Basel, Switz.) 2022; 10: 1811
    • 2b Ferronato N, Torretta V. Int. J. Environ. Res. Public Health 2019; 16: 1060
    • 3a White MC. J. Clin. Epidemiol. 1993; 46: 95
    • 3b Dadgostar P. Infect. Drug Resist. 2019; 12: 3903
    • 3c Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K. Eur. J. Pharm. Sci. 2022; 170: 106103
    • 3d Gidey K, Gidey MT, Hailu BY, Gebreamlak ZB, Niriayo YL. PLoS One 2023; 18: e0282141
    • 4a Stamm WE. Am. J. Med. 1991; 91: 65S
    • 4b Koenig SM, Truwit JD. Clin. Microbiol. Rev. 2006; 19: 637
    • 4c Rahmani K, Garikipati A, Barnes G, Hoffman J, Calvert J, Mao Q, Das R. Am. J. Infect. Control 2022; 50: 440
    • 5a Fürnkranz U, Walochnik J. Pathogens 2021; 10: 238
    • 5b Weinstein RA, Singh K. Clin. Infect. Dis. 2009; 49: 142
    • 5c Mukhopadhyay S, Bharath Prasad AS, Mehta CH, Nayak UY. World J. Microbiol. Biotechnol. 2020; 36: 131
    • 6a Bergogne-Bérézin E, Towner KJ. Clin. Microbiol. Rev. 1996; 9: 148
    • 6b Al Jarousha AM. K, El Jadba AH. N, Al Afifi AS, El Qouqa IA. Int. J. Infect. Dis. 2009; 13: 623
  • 7 Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clin. Microbiol. Rev. 2017; 30: 409
  • 8 Dijkshoorn L, Nemec A, Seifert H. Nat. Rev. Microbiol. 2007; 5: 939
  • 9 Peleg AY, Seifert H, Paterson DL. Clin. Microbiol. Rev. 2008; 21: 538
  • 10 Singh JK, Adams FG, Brown MH. Front. Microbiol. 2018; 9: 3301
  • 11 García A, Salgado F, Solar H, González CL, Zemelman R, Oñtate A. J. Med. Microbiol. 1999; 48: 479
  • 12 Lerouge I, Vanderleyden J. FEMS Microbiol. Rev. 2002; 26: 17
  • 13 Haseley SR, Wilkinson SG. Carbohydr. Res. 1998; 306: 257
  • 14 Haseley SR, Wilkinson SG. Carbohydr. Res. 1994; 264: 73
    • 15a Harale KR, Rout JK, Chhikara MK, Gill DS, Misra AK. Org. Chem. Front. 2017; 4: 2348
    • 15b Harale KR, Dumare NB, Singh D, Misra AK, Chhikara MK. RSC Adv. 2015; 5: 41332
    • 15c Dhara D, Baliban SM, Huo C.-X, Rashidijahanabad Z, Sears KT, Nick ST, Misra AK, Tennant SM, Huang X. Chem. Eur. J. 2020; 26: 15953
    • 16a Morelli L, Poletti L, Lay L. Eur. J. Org. Chem. 2011; 5723
    • 16b Hölemann A, Seeberger PH. Curr. Opin. Biotechnol. 2004; 15: 615
    • 16c Seeberger PH. Chem. Rev. 2021; 121: 3598
    • 16d Del Bino L, Østerlid KE, Wu D.-Y, Nonne F, Romano MR, Codée J, Adamo R. Chem. Rev. 2022; 122: 15672
    • 16e Roy R. Drug Discov. Today Technol. 2004; 1: 327
  • 18 Tamborrini M, Werz DB, Frey J, Pluschke G, Seeberger PH. Angew. Chem. Int. Ed. 2006; 45: 6581
  • 19 Santra A, Ghosh T, Misra AK. Tetrahedron: Asymmetry 2012; 23: 1385
  • 20 Mukherjee C, Misra AK. Glycoconj. J. 2008; 25: 611
  • 21 Guchhait G, Misra AK. Tetrahedron: Asymmetry 2009; 20: 1791
  • 22 Panchadhayee R, Misra AK. Tetrahedron: Asymmetry 2011; 22: 1390
  • 23 Shit P, Gucchait A, Misra AK. Tetrahedron 2019; 75: 130697
  • 24 Litjens RE. J. N, Leeuwenburgh MA, van der Marel GA, van Boom JH. Tetrahedron Lett. 2001; 42: 8693
  • 25 Bhattacharyya S, Magnusson BG, Wellmar U, Nilsson UJ. J. Chem. Soc., Perkin Trans. 1 2001; 886
  • 26 Fraser-Reid B, López JC. Top. Curr. Chem. 2011; 301: 1
  • 27 Khanam A, Mandal PK. Asian J. Org. Chem. 2020; 10: 296
  • 28 Teodorović P, Slättegård R, Oscarson S. Carbohydr. Res. 2005; 340: 2675
    • 29a Veeneman GH, van Leeuwen SH, van Boom JH. Tetrahedron Lett. 1990; 31: 1331
    • 29b Konradsson P, Udodong UE, Fraser-Reid B. Tetrahedron Lett. 1990; 31: 4313
  • 30 Madhusudan SK, Agnihotri G, Negi DS, Misra AK. Carbohydr. Res. 2005; 340: 1373
  • 31 Okiawa Y, Yoshioko T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
  • 32 Kundu M, Gucchait A, Misra AK. Tetrahedron 2020; 76: 130952
  • 33 Baek JY, Shin Y.-J, Jeon HB, Kim KS. Tetrahedron Lett. 2005; 46: 5143
  • 34 Lee H.-H, Schwartz DA, Harris JF, Carver JP, Krepinsky JJ. Can. J. Chem. 1986; 64: 1912
  • 35 Shangguan N, Katukojvala S, Greenberg R, Williams LJ. J. Am. Chem. Soc. 2003; 125: 7754
  • 36 Pearlman WM. Tetrahedron Lett. 1967; 8: 1663