Subscribe to RSS
DOI: 10.1055/s-0042-1751575
Stereospecific Palladium-Catalyzed Cross-Coupling of Alkylboron Compounds: A Short Account
This work was supported by the Creative-Pioneering Researchers Program, Seoul National University.
Abstract
Stereospecific approaches allow the introduction of a stereogenic center into complex organic molecules using optically active reagents. Among these, the Pd-catalyzed stereospecific cross-coupling of chiral alkylboron compounds stands out as a highly effective tool for organic synthesis. In parallel with advances in the development of borylation technology, the strategy has recently witnessed a growth in its applicability. This account aims to review the progress on Pd-catalyzed stereospecific B-alkyl Suzuki–Miyaura cross-coupling, tracing its evolution from early breakthroughs to the most recent advances.
1 Introduction
2 Cross-Coupling of 1° Alkylboron Compounds
3 Cross-Coupling of Benzylboron Compounds
4 Cross-Coupling of Allyl- and Propargylboron Compounds
5 Cross-Coupling of Other Types of Activated 2° Alkylboron Compounds
6 Cross-Coupling of Unactivated 2° Alkylboron Compounds
7 Conclusion and Outlook
Publication History
Received: 22 January 2024
Accepted after revision: 04 March 2024
Article published online:
20 March 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1b Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1c Beletskaya IP, Alonso F, Tyurin V. Coord. Chem. Rev. 2019; 385: 137
- 2a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
- 2b Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
- 3a Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 3b Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
- 4a Chemler SR, Trauner D, Danishefsky SJ. Angew. Chem. Int. Ed. 2001; 40: 4544
- 4b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 4c Choi J, Fu GC. Science 2017; 356: 1
- 5a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 5b Lovering F. Med. Chem. Commun. 2013; 4: 515
- 5c Prosser KE, Stokes RW, Cohen SM. ACS Med. Chem. Lett. 2020; 11: 1292
- 6 Miyaura N, Ishiyama T, Ishikawa M, Suzuki A. Tetrahedron Lett. 1986; 27: 6369
- 7 Ridgway BH, Woerpel KA. J. Org. Chem. 1998; 63: 458
- 8 Matos K, Soderquist JA. J. Org. Chem. 1998; 63: 461
- 9 Imao D, Glasspoole BW, Laberge VS, Crudden CM. J. Am. Chem. Soc. 2009; 131: 5024
- 10 Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
- 11 Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR. J. Am. Chem. Soc. 2014; 136: 14027
- 12 Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
- 13 Roh B, Farah AO, Kim B, Feoktistova T, Moller F, Kim KD, Cheong PH.-Y, Lee HG. J. Am. Chem. Soc. 2023; 145: 7075
- 14a Wang C.-Y, Derosa J, Biscoe MR. Chem. Sci. 2015; 6: 5105
- 14b Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
- 14c Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 14d Rygus JP. G, Crudden CM. J. Am. Chem. Soc. 2017; 139: 18124
- 14e Ma X, Murray B, Biscoe MR. Nat. Rev. Chem. 2020; 4: 584
- 15 Diner C, Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2
- 16a Nallagonda R, Padala K, Masarwa A. Org. Biomol. Chem. 2018; 16: 1050
- 16b Wu C, Wang J. Tetrahedron Lett. 2018; 59: 2128
- 16c Miralles N, Maza RJ, Fernández E. Adv. Synth. Catal. 2018; 360: 1306
- 16d Zhang C, Hu W, Morken JP. ACS Catal. 2021; 11: 10660
- 16e Lee Y, Han S, Cho SH. Acc. Chem. Res. 2021; 54: 3917
- 17a Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
- 17b Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
- 17c Friese FW, Studer A. Chem. Sci. 2019; 10: 8503
- 17d Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
- 17e Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
- 17f Hu J, Ferger M, Shi Z, Marder TB. Chem. Soc. Rev. 2021; 50: 13129
- 18 Bock PL, Boschetto DM, Rasmussen JR, Demers JP, Whitesides GM. J. Am. Chem. Soc. 1974; 96: 2814
- 19 Krizkova PM, Hammerschmidt F. Eur. J. Org. Chem. 2013; 5143
- 20 Murray B, Zhao S, Aramini JM, Wang H, Biscoe MR. ACS Catal. 2021; 11: 2504
- 21a Ameen D, Snape TJ. Med. Chem. Commun. 2013; 4: 893
- 21b Jia T, Cao P, Liao J. Chem. Sci. 2018; 9: 546
- 21c Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
- 22 Trost BM, Czabaniuk LC. Angew. Chem. Int. Ed. 2014; 53: 2826
- 23a Uenishi J, Beau JM, Armstrong RW, Kishi Y. J. Am. Chem. Soc. 1987; 109: 4756
- 23b Hirabayashi K, Kawashima J, Nishihara Y, Mori A, Hiyama T. Org. Lett. 1999; 1: 299
- 23c Chen H, Deng M.-Z. J. Org. Chem. 2000; 65: 4444
- 24 Matthew SC, Glasspoole BW, Eisenberger P, Crudden CM. J. Am. Chem. Soc. 2014; 136: 5828
- 25a Stymiest JL, Bagutski V, French RM, Aggarwal VK. Nature 2008; 456: 778
- 25b Bagutski V, French RM, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 5142
- 26 Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 27 Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
- 28a Yamamoto Y, Takada S, Miyaura N. Chem. Lett. 2006; 35: 704
- 28b Sebelius S, Olsson VJ, Wallner OA, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 8150
- 28c Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
- 28d Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
- 29 Partridge BM, Chausset-Boissarie L, Burns M, Pulis AP, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 11795
- 30 Chausset-Boissarie L, Ghozati K, LaBine E, Chen JL. Y, Aggarwal VK, Crudden CM. Chem. Eur. J. 2013; 19: 17698
- 31 Ding J, Rybak T, Hall DG. Nat. Commun. 2014; 5: 5474
- 32 Rybak T, Hall DG. Org. Lett. 2015; 17: 4156
- 33 Rubial B, Collins BS, Bigler R, Aichhorn S, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 1366
- 34 Potter B, Edelstein EK, Morken JP. Org. Lett. 2016; 18: 3286
- 35 Potter B, Szymaniak AA, Edelstein EK, Morken JP. J. Am. Chem. Soc. 2014; 136: 17918
- 36 Sandrock DL, Jean-Gerard L, Chen C.-Y, Dreher SD, Molander GA. J. Am. Chem. Soc. 2010; 132: 17108
- 37 Hoang GL, Yang ZD, Smith SM, Pal R, Miska JL, Pérez DE, Takacs JM. Org. Lett. 2015; 17: 940
- 38 Hoang GL, Takacs JM. Chem. Sci. 2017; 8: 4511
- 39 Ohmura T, Miwa K, Awano T, Suginome M. Chem. Asian J. 2018; 13: 2414
- 40 Daini M, Suginome M. J. Am. Chem. Soc. 2011; 133: 4758
- 41 Blaisdell TP, Morken JP. J. Am. Chem. Soc. 2015; 137: 8712
- 42 LaPorte AJ, Shi Y, Hein JE, Burke MD. ACS Catal. 2022; 12: 10905
- 43 Molander GA, Wisniewski SR. J. Am. Chem. Soc. 2012; 134: 16856
- 44 Laitar DS, Tsui EY, Sadighi JP. J. Am. Chem. Soc. 2006; 128: 11036
- 45 Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Chem. Eur. J. 2023; 29: e202203376
- 46 Lee JC. H, McDonald R, Hall DG. Nat. Chem. 2011; 3: 894
- 47 Endo K, Ohkubo T, Hirokami M, Shibata T. J. Am. Chem. Soc. 2010; 132: 11033
- 48 Feng X, Jeon H, Yun J. Angew. Chem. Int. Ed. 2013; 52: 3989
- 49 Sun C, Potter B, Morken JP. J. Am. Chem. Soc. 2014; 136: 6534
- 50 Viereck P, Krautwald S, Pabst TP, Chirik PJ. J. Am. Chem. Soc. 2020; 142: 3923
- 51 Kong Z, Hu W, Morken JP. ACS Catal. 2023; 13: 11522
- 52 Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
- 53 Willems S, Toupalas G, Reisenbauer JC, Morandi B. Chem. Commun. 2021; 57: 3909
- 54 Lehmann JW, Crouch IT, Blair DJ, Trobe M, Wang P, Li J, Burke MD. Nat. Commun. 2019; 10: 1263
For representative reviews, see:
For representative reviews on borylation, see: