Subscribe to RSS
DOI: 10.1055/s-0042-1753471
Influence of Bariatric Surgery on Oral Microbiota: A Systematic Review
Abstract
The study aims to systematically review the available literature to evaluate the changes in oral microbiota in patients after bariatric surgery (BS) and correlates these alterations in microorganisms with common oral manifestations. Relevant Electronic databases were systematically searched for indexed English literature. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed for framework designing, application, and reporting of the current systematic review. The focused PICO question was: “Is there any change in oral microbiota (O) of patients (P) who underwent BS (I) when compared with non-BS groups (C)?' Seven articles were selected for qualitative synthesis. On application of the National Institutes of Health (NIH) quality assessment tool, six studies were found to be of fair quality and one was of good quality. All the seven included studies evaluated the effect of BS on oral microbiota in humans. The outcomes of this review suggest that considerable changes take place in oral microbiota after BS which can be correlated with common oral manifestations. These changes are mainly due to the indirect effect of BS and may vary with the individuals. Due to variations in the included studies, it is difficult to proclaim any persistent pattern of oral microbiota found after BS.
Keywords
bariatric surgery - gingival crevicular fluid - microbiota - saliva - periodontal disease - mouthPublication History
Article published online:
08 September 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 World Health Organization. Obesity. Accessed July 15, 2021 at: https://www.who.int/health-topics/obesity#tab=tab_1
- 2 NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390 (10113): 2627-2642
- 3 World Health Organization. Obesity and overweight. Accessed on February 22, 2022 at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
- 4 Nocca D, Loureiro M, Skalli EM. et al. Five-year results of laparoscopic sleeve gastrectomy for the treatment of severe obesity. Surg Endosc 2017; 31 (08) 3251-3257
- 5 Angrisani L, Santonicola A, Iovino P. et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg 2018; 28 (12) 3783-3794
- 6 Courcoulas AP, King WC, Belle SH. et al. Seven-year weight trajectories and health outcomes in the longitudinal assessment of bariatric surgery (LABS) study. JAMA Surg 2018; 153 (05) 427-434
- 7 Jakobsen GS, Småstuen MC, Sandbu R. et al. Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA 2018; 319 (03) 291-301
- 8 Mango VL, Frishman WH. Physiologic, psychologic, and metabolic consequences of bariatric surgery. Cardiol Rev 2006; 14 (05) 232-237
- 9 Song A, Fernstrom MH. Nutritional and psychological considerations after bariatric surgery. Aesthet Surg J 2008; 28 (02) 195-199
- 10 Heling I, Sgan-Cohen HD, Itzhaki M, Beglaibter N, Avrutis O, Gimmon Z. Dental complications following gastric restrictive bariatric surgery. Obes Surg 2006; 16 (09) 1131-1134
- 11 Alves MdoS, da Silva FA, Araújo SG, de Carvalho AC, Santos AM, de Carvalho AL. Tooth wear in patients submitted to bariatric surgery. Braz Dent J 2012; 23 (02) 160-166
- 12 Marsicano JA, Grec PG, Belarmino LB, Ceneviva R, Peres SH. Interfaces between bariatric surgery and oral health: a longitudinal survey. Acta Cir Bras 2011; 26 (Suppl. 02) 79-83
- 13 Sales-Peres SH, de Moura-Grec PG, Yamashita JM. et al. Periodontal status and pathogenic bacteria after gastric bypass: a cohort study. J Clin Periodontol 2015; 42 (06) 530-536
- 14 de Moura-Grec PG, Yamashita JM, Marsicano JA. et al. Impact of bariatric surgery on oral health conditions: 6-months cohort study. Int Dent J 2014; 64 (03) 144-149
- 15 Hashizume LN, Bastos LF, Cardozo DD. et al. Impact of bariatric surgery on the saliva of patients with morbid obesity. Obes Surg 2015; 25 (08) 1550-1555
- 16 Shillitoe E, Weinstock R, Kim T. et al. The oral microflora in obesity and type-2 diabetes. J Oral Microbiol 2012; 4 DOI: 10.3402/jom.v4i0.19013.
- 17 Smith KR, Papantoni A, Veldhuizen MG. et al. Taste-related reward is associated with weight loss following bariatric surgery. J Clin Invest 2020; 130 (08) 4370-4381
- 18 Pepino MY, Bradley D, Eagon JC, Sullivan S, Abumrad NA, Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. [published correction appears in Obesity (Silver Spring). 2014 Oct;22(10):2276] Obesity (Silver Spring) 2014; 22 (05) E13-E20
- 19 De Vadder F, Kovatcheva-Datchary P, Goncalves D. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156 (1-2): 84-96
- 20 Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2: 94
- 21 Gutiérrez-Repiso C, Moreno-Indias I, de Hollanda A, Martín-Núñez GM, Vidal J, Tinahones FJ. Gut microbiota specific signatures are related to the successful rate of bariatric surgery. Am J Transl Res 2019; 11 (02) 942-952
- 22 Fouladi F, Brooks AE, Fodor AA. et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery. Obes Surg 2019; 29 (04) 1259-1267
- 23 Elliott JA, Reynolds JV, le Roux CW, Docherty NG. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. Expert Rev Endocrinol Metab 2016; 11 (06) 475-499
- 24 Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol 2014; 28 (04) 727-740
- 25 Pataro AL, Cortelli SC, Abreu MH. et al. Frequency of periodontal pathogens and Helicobacter pylori in the mouths and stomachs of obese individuals submitted to bariatric surgery: a cross-sectional study. J Appl Oral Sci 2016; 24 (03) 229-238
- 26 Džunková M, Lipták R, Vlková B. et al. Salivary microbiome composition changes after bariatric surgery. Sci Rep 2020; 10 (01) 20086
- 27 Balogh B, Somodi S, Tanyi M, Miszti C, Márton I, Kelentey B. Follow-up study of microflora changes in crevicular gingival fluid in obese subjects after bariatric surgery. Obes Surg 2020; 30 (12) 5157-5161
- 28 Stefura T, Zapała B, Gosiewski T, Krzysztofik M, Skomarovska O, Major P. Relationship between bariatric surgery outcomes and the preoperative gastrointestinal microbiota: a cohort study. Surg Obes Relat Dis 2021; 17 (05) 889-899
- 29 Mathus-Vliegen EM, Nikkel D, Brand HS. Oral aspects of obesity. Int Dent J 2007; 57 (04) 249-256
- 30 Shamseer L, Moher D, Clarke M. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P). [published correction appears in BMJ. 2016 Jul 21;354:i4086]. BMJ 2015; 349: g7647
- 31 NIH National Heart, Lung and Blood Institute. Study quality assessment tools. Accessed on July 14, 2021 at: https://www.nhlbi.nih.gov/health-pro/guidelines/indevelop/cardiovascular-risk-reduction/tools
- 32 Stefura T, Zapała B, Stój A. et al. Does postoperative oral and intestinal microbiota correlate with the weight-loss following bariatric surgery?-A cohort study. J Clin Med 2020; 9 (12) 3863
- 33 Taghat N, Mossberg K, Lingström P. et al. Oral health profile of postbariatric surgery individuals: a case series. Clin Exp Dent Res 2021; 7 (05) 811-818
- 34 Siqueira Jr JF, Rôças IN. The oral microbiota in health and disease: an overview of molecular findings. Methods Mol Biol 2017; 1537: 127-138
- 35 Bowden GHW. The microbial ecology of dental caries. Microb Ecol Health Dis 2000; 3: 138-148
- 36 Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ. Bacterial profiles of root caries in elderly patients. J Clin Microbiol 2008; 46 (06) 2015-2021
- 37 Lima KC, Coelho LT, Pinheiro IV, Rôças IN, Siqueira Jr JF. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. Caries Res 2011; 45 (01) 21-30
- 38 Sakamoto M, Huang Y, Umeda M, Ishikawa I, Benno Y. Detection of novel oral phylotypes associated with periodontitis. FEMS Microbiol Lett 2002; 217 (01) 65-69
- 39 Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. J Dent Res 2003; 82 (05) 338-344
- 40 Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 2005; 43 (08) 3944-3955
- 41 Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 1997; 82 (05) 1313-1316
- 42 Haffajee AD, Socransky SS. Relation of body mass index, periodontitis and Tannerella forsythia . J Clin Periodontol 2009; 36 (02) 89-99
- 43 Matsushita K, Hamaguchi M, Hashimoto M. et al. The novel association between red complex of oral microbe and body mass index in healthy Japanese: a population based cross-sectional study. J Clin Biochem Nutr 2015; 57 (02) 135-139
- 44 Yang Y, Cai Q, Zheng W. et al. Oral microbiome and obesity in a large study of low-income and African-American populations. J Oral Microbiol 2019; 11 (01) 1650597
- 45 Anbalagan R, Srikanth P, Mani M, Barani R, Seshadri KG, Janarthanan R. Next generation sequencing of oral microbiota in Type 2 diabetes mellitus prior to and after neem stick usage and correlation with serum monocyte chemoattractant-1. Diabetes Res Clin Pract 2017; 130: 204-210
- 46 NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007. Microbiome 2019; 7 (01) 31
- 47 Walker C, Gordon J. The effect of clindamycin on the microbiota associated with refractory periodontitis. J Periodontol 1990; 61 (11) 692-698
- 48 Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 2001; 1 (02) 101-114
- 49 Cavallaro V, Catania V, Bonaccorso R. et al. Effect of a broad-spectrum cephalosporin on the oral and intestinal microflora in patients undergoing colorectal surgery. J Chemother 1992; 4 (02) 82-87
- 50 Jaiswal GR, Jain VK, Dhodapkar SV. et al. Impact of bariatric surgery and diet modification on periodontal status: a six month cohort study. J Clin Diagn Res 2015; 9 (09) ZC43-ZC45
- 51 Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000 2005; 38: 135-187
- 52 de Moura-Grec PG, Marsicano JA, Rodrigues LM, de Carvalho Sales-Peres SH. Alveolar bone loss and periodontal status in a bariatric patient: a brief review and case report. Eur J Gastroenterol Hepatol 2012; 24 (01) 84-89
- 53 Nguyen PT, Baldeck JD, Olsson J, Marquis RE. Antimicrobial actions of benzimidazoles against oral streptococci. Oral Microbiol Immunol 2005; 20 (02) 93-100
- 54 Cattaneo C, Gargari G, Koirala R. et al. New insights into the relationship between taste perception and oral microbiota composition. Sci Rep 2019; 9 (01) 3549
- 55 Tanaka S, Yoshida M, Murakami Y. et al. The relationship of Prevotella intermedia, Prevotella nigrescens and Prevotella melaninogenica in the supragingival plaque of children, caries and oral malodor. J Clin Pediatr Dent 2008; 32 (03) 195-200
- 56 Al-Hebshi NN, Shuga-Aldin HM, Al-Sharabi AK, Ghandour I. Subgingival periodontal pathogens associated with chronic periodontitis in Yemenis. BMC Oral Health 2014; 14: 13
- 57 Macuch PJ, Tanner AC. Campylobacter species in health, gingivitis, and periodontitis. J Dent Res 2000; 79 (02) 785-792
- 58 Fragkioudakis I, Tseleki G, Doufexi AE, Sakellari D. Current concepts on the pathogenesis of peri-implantitis: a narrative review. Eur J Dent 2021; 15 (02) 379-387
- 59 Brasil-Oliveira R, Cruz ÁA, Sarmento VA, Souza-Machado A, Lins-Kusterer L. Corticosteroid use and periodontal disease: a systematic review. Eur J Dent 2020; 14 (03) 496-501
- 60 Budhy TI, Arundina I, Surboyo MDC, Halimah AN. The effects of rice husk liquid smoke in Porphyromonas gingivalis-induced periodontitis. Eur J Dent 2021; 15 (04) 653-659
- 61 Castro MML, Ferreira RO, Fagundes NCF, Almeida APCPSC, Maia LC, Lima RR. Association between psychological stress and periodontitis: a systematic review. Eur J Dent 2020; 14 (01) 171-179
- 62 Invernici MM, Salvador SL, Silva PHF. et al. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: a randomized clinical trial. J Clin Periodontol 2018; 45 (10) 1198-1210
- 63 Vieira Colombo AP, Magalhães CB, Hartenbach FA, Martins do Souto R, Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog 2016; 94: 27-34
- 64 Belstrøm D, Fiehn NE, Nielsen CH. et al. Altered bacterial profiles in saliva from adults with caries lesions: a case-cohort study. Caries Res 2014; 48 (05) 368-375
- 65 Willems HM, Kos K, Jabra-Rizk MA, Krom BP. Candida albicans in oral biofilms could prevent caries. Pathog Dis 2016; 74 (05) ftw039
- 66 Aslani N, Janbabaei G, Abastabar M. et al. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infect Dis 2018; 18 (01) 24
- 67 Lanau N, Mareque-Bueno J, Zabalza M. Does periodontal treatment help in arterial hypertension control? A systematic review of literature. Eur J Dent 2021; 15 (01) 168-173 DOI: 10.1055/s-0040-1718244.
- 68 Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002; 78 (922) 455-459
- 69 Kang JK, Kim E, Kim KH, Oh SH. Association of Helicobacter pylori with gastritis and peptic ulcer diseases. Yonsei Med J 1991; 32 (02) 157-168
- 70 Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000; 71 (10) 1554-1560
- 71 Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut?. J Oral Microbiol 2019; 11 (01) 1586422
- 72 Segata N, Haake SK, Mannon P. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 2012; 13 (06) R42
- 73 Olsen I. From the Acta Prize Lecture 2014: the periodontal-systemic connection seen from a microbiological standpoint. Acta Odontol Scand 2015; 73 (08) 563-568
- 74 Nakajima M, Arimatsu K, Kato T. et al. Oral administration of P. gingivalis Induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One 2015; 10 (07) e0134234 DOI: 10.1371/journal.pone.0134234.
- 75 Lu MY, Xuan SY, Wang Z. Oral microbiota: a new view of body health. Food Sci Hum Wellness 2019; 8: 8-15
- 76 Qin N, Yang F, Li A. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516): 59-64