CC BY 4.0 · Arq Neuropsiquiatr 2022; 80(09): 944-952
DOI: 10.1055/s-0042-1755275
View and Review

Diagnostic reasoning in neurogenetics: a general approach

Raciocínio diagnóstico em neurogenética: abordagem geral
1   Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre RS, Brazil.
,
2   Universidade Federal de São Paulo, Departamento de Neurologia, Unidade de Ataxias, São Paulo SP, Brazil.
,
1   Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre RS, Brazil.
3   Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Neurogenética, Porto Alegre RS, Brazil.
4   Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brazil.
5   Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
6   Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre RS, Brazil.
› Author Affiliations

Abstract

Establishing the definitive diagnosis of a neurogenetic disease is usually a complex task. However, like any type of clinical diagnostic reasoning, an organized process of development and consideration of diagnostic hypotheses may guide neurologists and medical geneticists to solve this difficult task. The aim of the present review is to propose a general method for diagnostic reasoning in neurogenetics, with the definition of the main neurological syndrome and its associated topographical diagnosis, followed by the identification of major and secondary neurological syndromes, extraneurological findings, and inheritance pattern. We also discuss general rules and knowledge requirements of the ordering physician to request genetic testing and information on how to interpret genetic variants in a genetic report. By guiding the requests for genetic testing according to an organized model of diagnostic reasoning and with the availability of specific treatments, clinicians may find greater resoluteness and efficacy in the diagnostic investigation, shortening the struggle of patients for a definitive diagnosis.

Resumo

Estabelecer o diagnóstico definitivo de uma condição neurogenética geralmente é uma tarefa complexa; entretanto, semelhante a qualquer raciocínio diagnóstico clínico, um processo organizado de formulação e ponderação de hipóteses diagnósticas pode ajudar neurologistas e médicos geneticistas a resolverem essa difícil tarefa. O objetivo desta revisão é propor um método geral de raciocínio diagnóstico em neurogenética, com a definição da síndrome neurológica principal e seu diagnóstico topográfico associado, seguidos da identificação das síndromes neurológicas principais e secundárias, dos achados extraneurológicos, e do padrão de herança. Também discutimos as regras gerais e os requisitos de conhecimento do médico solicitante para o pedido de teste genético e informações sobre como interpretar variantes genéticas quando recebemos um laudo. Ao orientar a solicitação de exames genéticos de acordo com um modelo organizado de raciocínio diagnóstico e com a disponibilidade de tratamentos específicos, o clínico poderá encontrar maior resolutividade e eficiência na investigação diagnóstica, o que encurtará a odisseia do paciente para um diagnóstico definitivo.

Authors' Contributions

HF: conceptualization, writing of the original draft; JLP: writing, review, and editing; JAS: conceptualization, writing of the original draft, and writing, review, and editing.




Publication History

Received: 22 June 2021

Accepted: 22 September 2021

Article published online:
09 November 2022

© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Geschwind DH. Evolving views of human genetic variation and its relationship to neurologic and psychiatric disease. Handb Clin Neurol 2018; 147: 37-42
  • 2 Fogel BL. Genetic and genomic testing for neurologic disease in clinical practice. Handb Clin Neurol 2018; 147: 11-22
  • 3 Nussbaum RL, McInnes RR, Willard HF. Thompson & Thompson Genetics in Medicine. 8th Edition. Elsevier; 2015
  • 4 Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis 2006; 29 (2-3): 261-274
  • 5 Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10 (08) 721-733
  • 6 Ohba C, Osaka H, Iai M. et al. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 2013; 14 (3-4): 225-232
  • 7 Sawyer SL, Schwartzentruber J, Beaulieu CL. et al; FORGE Canada Consortium. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat 2014; 35 (01) 45-49
  • 8 Fogel BL, Lee H, Deignan JL. et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 2014; 71 (10) 1237-1246
  • 9 Coutelier M, Coarelli G, Monin ML. et al; SPATAX network. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 2017; 140 (06) 1579-1594
  • 10 Chaves MLF. Raciocínio Diagnóstico em Neurologia. In: Chaves MLF, Finkelsztejn A, Stefani MA. Rotinas em Neurologia e Neurocirurgia. 1 st Edition. . Artmed. 2008
  • 11 Ropper AH, Samuels MA, Klein JP. Approach to the Patient with Neurologic Disease. In: Adams and Victor's Principle of Neurology, 10 th Edition. McGraw-Hill education; 2014
  • 12 Brashear A, Sweadner KJ, Cook JF. et al. ATP1A3-Related Neurologic Disorders. 2008 Feb 7 [Updated 2018 Feb 22]. In: Adam MP, Ardinger HH, Pagon RA. et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; ; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1115/
  • 13 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 14 Karczewski KJ, Francioli LC, Tiao G. et al; Genome Aggregation Database Consortium. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581 (7809): 434-443
  • 15 Rocha CS, Secolin R, Rodrigues MR, Carvalho BS, Lopes-Cendes I. The Brazilian Initiative on Precision Medicine (BIPMed): fostering genomic data-sharing of underrepresented populations. NPJ Genom Med. 2020 Oct 2;5:42. doi: 10.1038/s41525-020-00149-6. PMID: 33083011; PMCID: PMC7532430
  • 16 Naslavsky MS, Yamamoto GL, de Almeida TF. et al. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat 2017; 38 (07) 751-763
  • 17 Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001; 11 (05) 863-874
  • 18 Adzhubei IA, Schmidt S, Peshkin L. et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7 (04) 248-249
  • 19 Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019; 47 (D1): D886-D894
  • 20 Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11 (04) 361-362
  • 21 Jagadeesh KA, Wenger AM, Berger MJ. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016; 48 (12) 1581-1586
  • 22 Ioannidis NM, Rothstein JH, Pejaver V. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet 2016; 99 (04) 877-885
  • 23 Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF. et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019; 176 (03) 535-548.e24
  • 24 Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009; 37 (09) e67
  • 25 Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 2006; 15 (16) 2490-2508
  • 26 Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. NISC Comparative Sequencing Program. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15 (07) 901-913
  • 27 Jarvik GP, Browning BL. Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants. Am J Hum Genet 2016; 98 (06) 1077-1081
  • 28 Kearney HM, South ST, Wolff DJ, Lamb A, Hamosh A, Rao KW. Working Group of the American College of Medical Genetics. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities. Genet Med 2011; 13 (07) 676-679
  • 29 Tifft CJ, Adams DR. The National Institutes of Health undiagnosed diseases program. Curr Opin Pediatr 2014; 26 (06) 626-633
  • 30 Souza GN, Kersting N, Krum-Santos AC. et al. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet 2016; 90 (02) 134-140
  • 31 Cruz MW. Regional differences and similarities of familial amyloidotic polyneuropathy (FAP) presentation in Brazil. Amyloid 2012; 19 (Suppl 1): 65-67
  • 32 Nishimura AL, Mitne-Neto M, Silva HC. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75 (05) 822-831
  • 33 Chadi G, Maximino JR, Jorge FMH. et al. Genetic analysis of patients with familial and sporadic amyotrophic lateral sclerosis in a Brazilian Research Center. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18 (3-4): 249-255