CC BY 4.0 · Arq Neuropsiquiatr 2022; 80(07): 699-705
DOI: 10.1055/s-0042-1755277
Original Article

Brain volume loss and physical and cognitive impairment in naive multiple sclerosis patients treated with fingolimod: prospective cohort study in Buenos Aires, Argentina

Perda de volume cerebral e comprometimento físico e cognitivo em pacientes recém-diagnosticados com esclerose múltipla tratados com fingolimode: estudo de coorte prospectivo em Buenos Aires, Argentina
1   Multiple Sclerosis Center of Buenos Aires, Buenos Aires, Argentina.
2   Hospital Universitario CEMIC, Neurology Service, Buenos Aires, Argentina.
,
3   Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina.
,
3   Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina.
,
1   Multiple Sclerosis Center of Buenos Aires, Buenos Aires, Argentina.
,
1   Multiple Sclerosis Center of Buenos Aires, Buenos Aires, Argentina.
› Author Affiliations

Abstract

Background The percentage of brain volume loss (PBVL) has been classically considered as a biomarker in multiple sclerosis (MS).

Objective The objective of the present study was to analyze if the PBVL during the 1st year after the onset of the disease predicts physical and cognitive impairment (CI).

Methods Prospective study that included naïve patients without cognitive impairment who initiated MS treatment with fingolimod. Patients were followed for 3 years and relapses, expanded disability status scale (EDSS) progression (defined as worsening of 1 point on the EDSS), the annual PBVL (evaluated by structural image evaluation using normalization of atrophy [SIENA]), and the presence of CI were evaluated. Cognitive impairment was defined in patients who scored at least 2 standard deviations (SDs) below controls on at least 2 domains. The PBVL after 1 year of treatment with fingolimod was used as an independent variable, while CI and EDSS progression at the 3rd year of follow-up as dependent variables.

Results A total of 71 patients were included, with a mean age of 35.4 ± 3 years old. At the 3rd year, 14% of the patients were classified as CI and 6.2% had EDSS progression. In the CI group, the PBVL during the 1st year was - 0.52 (±0.07) versus -0.42 (±0.04) in the no CI group (p < 0.01; odds ratio [OR] = 2.24; 95% confidence interval [CI]: 1.72–2.44). In the group that showed EDSS progression, the PBVL during the 1st year was - 0.59 (±0.05) versus - 0.42 (±0.03) (p < 0.01; OR = 2.33; 95%CI: 1.60–2.55).

Conclusions A higher PBVL during the 1st year in naïve MS patients was independently associated with a significant risk of CI and EDSS progression.

Resumo

Antecedentes A porcentagem de perda de volume cerebral (PPVC) é um biomarcador na esclerose múltipla (EM).

Objetivo Analisar se a PPVC durante o 1° ano após o início da doença prediz deterioração física (DF) e cognitiva (DC) em pacientes com EM.

Métodos Estudo de coorte prospectivo que incluiu pacientes recém-diagnosticados sem comprometimento cognitivo que iniciaram tratamento com fingolimode. Os pacientes foram acompanhados por 3 anos, sendo avaliados a presença de recidivas, progressão da Escala Expandida do Estado de Incapacidade (EDSS, na sigla em inglês) (definida como agravamento de 1 ponto na EDSS), o PPVC anual (avaliado pela avaliação de imagem estrutural de atrofia normalizada [SIENA, na sigla em inglês) e a presença de DC (avaliada no início do estudo e nos 2° e 3° anos). O PPVC no 1° ano de tratamento com fingolimode foi utilizado como variável independente.

Resultados foram incluídos 71 pacientes com idade média de 35,4 ± 3 anos. No 3° ano, 14% dos pacientes tiveram DC e 6,2% tiveram progressão de EDSS. No grupo DC, o PPVC durante o 1o ano foi - 0,52 (±0,07) versus - 0,42 (±0,04) no grupo sem DC (p < 0,01; razão de probabilidades [OR, na sigla em inglês] = 2,24; intervalo de confiança [IC] de 95%: 1,72–2,44). No grupo que apresentou progressão da EDSS, o PPVC durante o 1° ano foi de - 0,59 (±0,05) versus - 0,42 (±0,03) (p < 0,01; OR = 2,33; IC95%: 1,60–2,55).

Conclusões Um maior PPVC durante o 1° ano foi associado a um risco significativo de progressão de DC e EDSS durante o seguimento.

Authors' Contributions

JIR, LP: Data collection, data management, data analysis, and manuscript review; FS: Data collection, data management, and manuscript review; AP, EC: Data collection and manuscript review.


Support

The present research was funded by an educational grant from Novartis Argentina.




Publication History

Received: 16 September 2021

Accepted: 19 October 2021

Article published online:
29 September 2022

© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med 2018; 378 (02) 169-180
  • 2 Comi G, Radaelli M, Soelberg Sørensen P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet 2017; 389 (10076): 1347-1356
  • 3 Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338 (05) 278-285
  • 4 Sormani MP, Kappos L, Radue EW. et al. Defining brain volume cutoffs to identify clinically relevant atrophy in RRMS. Mult Scler 2017; 23 (05) 656-664
  • 5 Moccia M, de Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Mult Scler 2017; 23 (12) 1614-1626
  • 6 Kappos L, De Stefano N, Freedman MS. et al. Inclusion of brain volume loss in a revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler 2016; 22 (10) 1297-1305
  • 7 Eshaghi A, Marinescu RV, Young AL. et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018; 141 (06) 1665-1677
  • 8 Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008; 64 (03) 255-265
  • 9 Preziosa P, Pagani E, Mesaros S. et al. Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: A 5-year study. Hum Brain Mapp 2017; 38 (11) 5648-5665
  • 10 De Stefano N, Stromillo ML, Giorgio A. et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016; 87 (01) 93-99
  • 11 Schoonheim MM, Hulst HE, Brandt RB. et al. Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 2015; 84 (08) 776-783
  • 12 Yildiz M, Tettenborn B, Radue EW, Bendfeldt K, Borgwardt S. Association of cognitive impairment and lesion volumes in multiple sclerosis–a MRI study. Clin Neurol Neurosurg 2014; 127: 54-58
  • 13 Yaldizli Ö, Penner IK, Frontzek K. et al. The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult Scler 2014; 20 (03) 356-364
  • 14 Feinstein A, Lapshin H, O'Connor P, Lanctôt KL. Sub-threshold cognitive impairment in multiple sclerosis: the association with cognitive reserve. J Neurol 2013; 260 (09) 2256-2261
  • 15 Amato MP, Hakiki B, Goretti B. et al; Italian RIS/MS Study Group. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology 2012; 78 (05) 309-314
  • 16 Polman CH, Reingold SC, Banwell B. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (02) 292-302
  • 17 Cristiano E, Rojas JI, Alonso R. et al. Consensus recommendations on the management of multiple sclerosis patients in Argentina. J Neurol Sci 2020; 409: 116609
  • 18 Smith SM, De Stefano N, Jenkinson M, Matthews PM. Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 2001; 25 (03) 466-475
  • 19 Smith SM, Zhang Y, Jenkinson M. et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17 (01) 479-489
  • 20 Rao SM. A Manual for the Brief Repeatable Battery of Neuropsychological Tests in Multiple Sclerosis: Medical College of Wisconsin. Milwaukee: Medical College of Wisconsin; 1990
  • 21 Rojas JI, Patrucco L, Miguez J, Cristiano E. Brain atrophy in multiple sclerosis: therapeutic, cognitive and clinical impact. Arq Neuropsiquiatr 2016; 74 (03) 235-243
  • 22 Bermel RA, Sharma J, Tjoa CW, Puli SR, Bakshi R. A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 2003; 208 (1-2): 57-65
  • 23 Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006; 5 (02) 158-170
  • 24 Sharma J, Sanfilipo MP, Benedict RH, Weinstock-Guttman B, Munschauer III FE, Bakshi R. Whole-brain atrophy in multiple sclerosis measured by automated versus semiautomated MR imaging segmentation. AJNR Am J Neuroradiol 2004; 25 (06) 985-996
  • 25 Minagar A, Barnett MH, Benedict RH. et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013; 80 (02) 210-219
  • 26 Zivadinov R, Havrdová E, Bergsland N. et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 2013; 268 (03) 831-841
  • 27 Fisniku LK, Chard DT, Jackson JS. et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 2008; 64 (03) 247-254
  • 28 Sastre-Garriga J, Ingle GT, Chard DT, Ramió-Torrentà L, Miller DH, Thompson AJ. Grey and white matter atrophy in early clinical stages of primary progressive multiple sclerosis. Neuroimage 2004; 22 (01) 353-359
  • 29 Popescu V, Agosta F, Hulst HE. et al; MAGNIMS Study Group. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2013; 84 (10) 1082-1091
  • 30 Houtchens MK, Benedict RH, Killiany R. et al. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007; 69 (12) 1213-1223
  • 31 Sanfilipo MP, Benedict RH, Sharma J, Weinstock-Guttman B, Bakshi R. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 2005; 26 (04) 1068-1077
  • 32 Sanfilipo MP, Benedict RH, Weinstock-Guttman B, Bakshi R. Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 2006; 66 (05) 685-692
  • 33 Summers M, Fisniku L, Anderson V, Miller D, Cipolotti L, Ron M. Cognitive impairment in relapsing-remitting multiple sclerosis can be predicted by imaging performed several years earlier. Mult Scler 2008; 14 (02) 197-204
  • 34 Uher T, Blahova-Dusankova J, Horakova D. et al. Longitudinal MRI and neuropsychological assessment of patients with clinically isolated syndrome. J Neurol 2014; 261 (09) 1735-1744
  • 35 Brinkmann V, Billich A, Baumruker T. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010; 9 (11) 883-897
  • 36 Kappos L, Radue EW, O'Connor P. et al; FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 387-401
  • 37 Cohen JA, Barkhof F, Comi G. et al; TRANSFORMS Study Group. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 402-415
  • 38 Comi G, Patti F, Rocca MA. et al; Golden Study Group. Efficacy of fingolimod and interferon beta-1b on cognitive, MRI, and clinical outcomes in relapsing-remitting multiple sclerosis: an 18-month, open-label, rater-blinded, randomised, multicentre study (the GOLDEN study). J Neurol 2017; 264 (12) 2436-2449