Semin Musculoskelet Radiol 2022; 26(04): 510-520
DOI: 10.1055/s-0042-1755345
Review Article

Imaging of Common Spinal Cord Diseases

Camilla Russo
1   Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy
2   Department of Electrical Engineering and Information Technology (DIETI), Università Degli Studi di Napoli Federico II, Naples, Italy
,
Gianluca Muto
3   Service de Radiologie, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
,
Flavio Giordano
1   Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy
,
Salvatore Masala
4   Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiation Therapy, Università degli Studi di Roma Tor Vergata, Rome, Italy
,
Mario Muto
1   Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy
› Author Affiliations

Abstract

Spinal cord evaluation is an integral part of spine assessment, and its reliable imaging work-up is mandatory because even localized lesions may produce serious effects with potentially irreversible sequelae. Spinal cord alterations are found both incidentally during spine evaluation in otherwise neurologically asymptomatic patients or during neurologic/neuroradiologic assessment in myelopathic patients. Myelopathy (an umbrella term for any neurologic deficit that refers to spinal cord impairment) can be caused by intrinsic lesions or extrinsic mechanical compression, and its etiology may be both traumatic and/or nontraumatic. The symptoms largely depend on the size/extension of lesions, ranging from incontinence to ataxia, from spasticity to hyperreflexia, from numbness to weakness. Magnetic resonance imaging is the reference imaging modality in spinal cord evaluation, ensuring the best signal and spatial resolution. We provide an overview of the most common spinal cord disorders encountered by radiologists and describe the technical measures that offer optimal spinal cord visualization.

Supplementary Material



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Pearce JMS. The development of spinal cord anatomy. Eur Neurol 2008; 59 (06) 286-291
  • 2 Purves D, Augustine GJ, Fitzpatrick D. et al. The internal anatomy of the spinal cord. In: Purves D, Augustine GJ, Fitzpatrick D. et al, eds. Neuroscience. 2nd ed.. Sunderland, MA: Sinauer Associates; 2001
  • 3 Gofur E, Singh P. Anatomy, back, vertebral canal blood supply. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing;
  • 4 Wheeler-Kingshott CA, Stroman PW, Schwab JM. et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage 2014; 84: 1082-1093
  • 5 Pierre-Jerome C, Arslan A, Bekkelund SI. MRI of the spine and spinal cord: imaging techniques, normal anatomy, artifacts, and pitfalls. J Manipulative Physiol Ther 2000; 23 (07) 470-475
  • 6 Vargas MI, Boto J, Meling TR. Imaging of the spine and spinal cord: an overview of magnetic resonance imaging (MRI) techniques. Rev Neurol (Paris) 2021; 177 (05) 451-458
  • 7 Do-Dai DD, Brooks MK, Goldkamp A, Erbay S, Bhadelia RA. Magnetic resonance imaging of intramedullary spinal cord lesions: a pictorial review. Curr Probl Diagn Radiol 2010; 39 (04) 160-185
  • 8 Chen Y, Haacke EM, Bernitsas E. Imaging of the spinal cord in multiple sclerosis: past, present, future. Brain Sci 2020; 10 (11) E857
  • 9 Bammer R, Fazekas F, Augustin M. et al. Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol 2000; 21 (03) 587-591
  • 10 Holder CA, Muthupillai R, Mukundan Jr S, Eastwood JD, Hudgins PA. Diffusion-weighted MR imaging of the normal human spinal cord in vivo. AJNR Am J Neuroradiol 2000; 21 (10) 1799-1806
  • 11 Hiremath SB, Boto J, Regnaud A, Etienne L, Fitsiori A, Vargas MI. Incidentalomas in spine and spinal cord imaging. Clin Neuroradiol 2019; 29 (02) 191-213
  • 12 Martin AR, Aleksanderek I, Cohen-Adad J. et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 2015; 10: 192-238
  • 13 Stroman PW, Cahill CM. Functional magnetic resonance imaging of the human spinal cord and brainstem during heat stimulation. Proc Intl Soc Mag Reson Med 2006; 14: 6-12
  • 14 Vargas MI, Gariani J, Sztajzel R. et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol 2015; 36 (05) 825-830
  • 15 Ellingson BM, Salamon N, Hardy AJ, Holly LT. Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion MRI and proton MR spectroscopy. PLoS One 2015; 10 (10) e0139451
  • 16 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 17 Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 2009; 18 (1, Suppl 1): 102-108
  • 18 Levy LM, Di Chiro G, Brooks RA, Dwyer AJ, Wener L, Frank J. Spinal cord artifacts from truncation errors during MR imaging. Radiology 1988; 166 (02) 479-483
  • 19 Marrodan M, Gaitán MI, Correale J. Spinal cord involvement in MS and other demyelinating diseases. Biomedicines 2020; 8 (05) 130
  • 20 Miki Y. Magnetic resonance imaging diagnosis of demyelinating diseases: an update. Clin Exp Neuroimmunol 2019; 10 (S1): 32-48
  • 21 Lee MJ, Aronberg R, Manganaro MS, Ibrahim M, Parmar HA. Diagnostic approach to intrinsic abnormality of spinal cord signal intensity. Radiographics 2019; 39 (06) 1824-1839
  • 22 Bartels F, Lu A, Oertel FC, Finke C, Paul F, Chien C. Clinical and neuroimaging findings in MOGAD-MRI and OCT. Clin Exp Immunol 2021; 206 (03) 266-281
  • 23 Montalvo M, Cho TA. Infectious myelopathies. Neurol Clin 2018; 36 (04) 789-808
  • 24 Granados Sanchez AM, Garcia Posada LM, Ortega Toscano CA, Lopez Lopez A. Diagnostic approach to myelopathies. Rev Colomb Radiol 2011; 22 (03) 3231-3251
  • 25 Agmon-Levin N, Kivity S, Szyper-Kravitz M, Shoenfeld Y. Transverse myelitis and vaccines: a multi-analysis. Lupus 2009; 18 (13) 1198-1204
  • 26 Cree BAC. Acute inflammatory myelopathies. Handb Clin Neurol 2014; 122: 613-667
  • 27 Nardone R, Versace V, Brigo F. et al. Herpes simplex virus type 2 myelitis: case report and review of the literature. Front Neurol 2017; 8: 199
  • 28 Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm 2020; 7 (05) e803
  • 29 Grill MF. Infectious myelopathies. Continuum (Minneap Minn) 2018; 24 (2, Spinal Cord Disorders): 441-473
  • 30 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30 (04) 639-648
  • 31 Heldner MR, Arnold M, Nedeltchev K, Gralla J, Beck J, Fischer U. Vascular diseases of the spinal cord: a review. Curr Treat Options Neurol 2012; 14 (06) 509-520
  • 32 Clark AJ, Wang DD, Lawton MT. Spinal cavernous malformations. In: Spetzler RF, Moon K, Almefty RO. eds. Handbook of Clinical Neurology. Philadelphia, PA: Elsevier; 2017: 303-308
  • 33 Renieri L, Raz E, Lanzino G. et al. Spinal artery aneurysms: clinical presentation, radiological findings and outcome. J Neurointerv Surg 2018; 10 (07) 644-648
  • 34 Gaur R, Mittal N, Joshi M, Dubey K. A rare study of electric shock associated spinal injuries: prognosis and outcome. Int J Contemp Med Res 2016; 3 (08) 2450-2453
  • 35 Schwendimann RN. Metabolic and toxic myelopathies. Continuum (Minneap Minn) 2018; 24 (2, Spinal Cord Disorders): 427-440
  • 36 Goodman BP. Metabolic and toxic causes of myelopathy. Continuum (Minneap Minn) 2015; 21 (1, Spinal Cord Disorders): 84-99
  • 37 Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 2000; 157 (02) 361-368
  • 38 Lorenzi RM, Palesi F, Castellazzi G. et al. Unsuspected involvement of spinal cord in Alzheimer disease. Front Cell Neurosci 2020; 14: 6
  • 39 Cools MJ, Al-Holou WN, Stetler Jr WR. et al. Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr 2014; 13 (05) 559-567
  • 40 Fam MD, Woodroffe RW, Helland L. et al. Spinal arachnoid cysts in adults: diagnosis and management. A single-center experience. J Neurosurg Spine 2018; 29 (06) 711-719
  • 41 Atesok K, Tanaka N, O'Brien A. et al. Posttraumatic spinal cord injury without radiographic abnormality. Adv Orthop 2018; 2018: 7060654
  • 42 Boese CK, Müller D, Bröer R. et al. Spinal cord injury without radiographic abnormality (SCIWORA) in adults: MRI type predicts early neurologic outcome. Spinal Cord 2016; 54 (10) 878-883