CC BY 4.0 · Eur J Dent 2023; 17(03): 623-628
DOI: 10.1055/s-0042-1757468
Review Article

Micro Computed Tomography and Immunohistochemistry Analysis of Dental Implant Osseointegration in Animal Experimental Model: A Scoping Review

Annisa Putri
1   Dentomaxillofacial Radiology Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
,
Farina Pramanik
2   Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
,
Azhari Azhari
2   Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
› Author Affiliations

Abstract

Osseointegration is a complex process that involves the interaction of dental implants, bone, and the immune system. Preclinical testing was carried out to develop a better understanding of the mechanism. Micro-computed tomography (micro-CT) imaging techniques and immunohistochemistry are excellent tools for this objective as both enable quantitative assessment of bone microarchitecture and intercellular interaction. An extensive literature search was conducted using the databases PubMed, Science Direct, Wiley Online, Proquest and Ebscohost from January 2011 to January 2021. Among the publications retrieved, the rat model was the most frequently used experimental protocol, with the tibia being the most frequently implanted site. The region of interest demonstrates a high degree of homogeneity as measured by trabecula but varies in size and shape. The most frequently mentioned micro-CT bone parameter and immunohistochemistry bone markers were bone volume per total volume (BV/TV) and runt-related transcription factors (RUNX). Animal models, micro-CT analysis methods, and immunohistochemistry biomarkers yielded a variety of results in the studies. Understanding bone architecture and the remodeling process will aid in the selection of a viable model for a specific research topic.

Authors' Contributions

A.A. conceptualized the manuscript and supervision; F.P. and A.P. were involved in the methodology, writing, review, and editing of the manuscript; all authors read and agreed to the published version of the manuscript.




Publication History

Article published online:
28 March 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Wang X, Li Y, Feng Y, Cheng H, Li D. The role of macrophages in osseointegration of dental implants: an experimental study in vivo. J Biomed Mater Res A 2020; 108 (11) 2206-2216 DOI: 10.1002/jbm.a.36978.
  • 2 Albrektsson T, Chrcanovic B, Jacobsson M, Wennerberg A. Osseointegration of implants: a biological and clinical overview. JSM Dent Surg 2017; 2 (03) 1022
  • 3 Hanif A, Qureshi S, Sheikh Z, Rashid H. Complications in implant dentistry. Eur J Dent 2017; 11 (01) 135-140 DOI: 10.4103/EJD.EJD_340_16.
  • 4 Elemek E, Urgancioglu A, Dincer J, Cilingir A. Does implant-abutment interface affect marginal bone levels around implants?. Eur J Dent 2019; 13 (01) 47-52 DOI: 10.1055/s-0039-1688538.
  • 5 Wheelis SE, Biguetti CC, Natarajan S. et al. Cellular and molecular dynamics during early oral osseointegration: a comprehensive characterization in the Lewis rat. ACS Biomater Sci Eng 2021; 7 (06) 2392-2407 DOI: 10.1021/acsbiomaterials.0c01420.
  • 6 Steiner L, Synek A, Pahr DH. Comparison of different microCT-based morphology assessment tools using human trabecular bone. Bone Rep 2020; 12: 100261 DOI: 10.1016/j.bonr.2020.100261.
  • 7 Kulah K, Gulsahi A, Kamburoğlu K. et al. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127 (03) 247-256 DOI: 10.1016/j.oooo.2018.11.014.
  • 8 Faot F, Chatterjee M, de Camargos GV, Duyck J, Vandamme K. Micro-CT analysis of the rodent jaw bone micro-architecture: a systematic review. Bone Rep 2015; 2: 14-24 DOI: 10.1016/j.bonr.2014.10.005.
  • 9 Otsu Y, Matsunaga S, Furukawa T. et al. Structural characteristics of the bone surrounding dental implants placed into the tail-suspended mice. Int J Implant Dent 2021; 7 (01) 89 DOI: 10.1186/s40729-021-00374-3.
  • 10 Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res 2015; 26 (01) e1-e7 DOI: 10.1111/clr.12315.
  • 11 Yang Y, Zhang T, Jiang M, Yin X, Luo X, Sun H. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration. J Biomed Mater Res A 2021; 109 (08) 1429-1440 DOI: 10.1002/jbm.a.37134.
  • 12 Bielemann AM, Marcello-Machado RM, Del Bel Cury AA, Faot F. Systematic review of wound healing biomarkers in peri-implant crevicular fluid during osseointegration. Arch Oral Biol 2018; 89: 107-128
  • 13 Dos Santos Trento G, Hassumi JS, Buzo Frigério P. et al. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material. Int J Implant Dent 2020; 6 (01) 80 DOI: 10.1186/s40729-020-00279-7.
  • 14 Vandamme K, Holy X, Bensidhoum M. et al. Establishment of an in vivo model for molecular assessment of titanium implant osseointegration in compromised bone. Tissue Eng Part C Methods 2011; 17 (03) 311-318 DOI: 10.1089/ten.tec.2010.0402.
  • 15 Tan N, Liu X, Cai Y. et al. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs. Int J Nanomedicine 2017; 12: 5433-5442 DOI: 10.2147/IJN.S138615.
  • 16 de Oliveira PGFP, de Melo Soares MS, Silveira e Souza AMM. et al. Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A 2019; 2020: 1-13 DOI: 10.1002/jbm.a.37052.
  • 17 Cirano FR, Pimentel SP, Casati MZ. et al. Effect of curcumin on bone tissue in the diabetic rat: repair of peri-implant and critical-sized defects. Int J Oral Maxillofac Implants 2018; 47 (11) 1495-1503 DOI: 10.1016/j.ijom.2018.04.018.
  • 18 Faverani LP, Polo TOB, Ramalho-Ferreira G. et al. Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clin Oral Investig 2018; 22 (01) 255-265
  • 19 de Paula LGF, Lopes de Oliveira GJP, Pinotti FE, Grecchi BB, de Aquino SG, Chiérici Marcantonio RA. Effect of avocado/soybean unsaponifiables (ASU) on osseointegration in rats with experimental arthritis. Int J Oral Maxillofac Implants 2018; 33 (03) 603-612 DOI: 10.11607/jomi.6124.
  • 20 Liu Y, Zheng G, Liu L. et al. Inhibition of osteogenesis surrounding the titanium implant by CGRP deficiency. Connect Tissue Res 2018; 59 (02) 147-156 DOI: 10.1080/03008207.2017.1317759.
  • 21 Palin LP, Polo TOB, Batista FRS. et al. Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci 2018; 26: e20170470 DOI: 10.1590/1678-7757-2017-0470.
  • 22 Yogui FC, Momesso GAC, Faverani LP. et al. A SERM increasing the expression of the osteoblastogenesis and mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis. J Appl Oral Sci 2018; 26 (18) e20170329 DOI: 10.1590/1678-7757-2017-0329.
  • 23 Ribeiro FV, Pimentel SP, Corrêa MG, Bortoli JP, Messora MR, Casati MZ. Resveratrol reverses the negative effect of smoking on peri-implant repair in the tibia of rats. Clin Oral Implants Res 2019; 30 (01) 1-10 DOI: 10.1111/clr.13384.
  • 24 Corrêa MG, Ribeiro FV, Pimentel SP. et al. Impact of resveratrol in the reduction of the harmful effect of diabetes on peri-implant bone repair: bone-related gene expression, counter-torque and micro-CT analysis in rats. Acta Odontol Scand 2021; 79 (03) 174-181 DOI: 10.1080/00016357.2020.1797159.
  • 25 Biguetti CC, Cavalla F, Silveira EM. et al. Oral implant osseointegration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular characterization. J Appl Oral Sci 2018; 26: e20170601 DOI: 10.1590/1678-7757-2017-0601.
  • 26 Li H, Chen Z, Zhong X, Li J, Li W. Mangiferin alleviates experimental peri-implantitis via suppressing interleukin-6 production and Toll-like receptor 2 signaling pathway. J Orthop Surg Res 2019; 14 (01) 325 DOI: 10.1186/s13018-019-1387-3.
  • 27 Diao X, Li Z, An B. et al. The Microdamage and expression of sclerostin in peri-implant bone under one-time shock force generated by impact. Sci Rep 2017; 7 (01) 6508 DOI: 10.1038/s41598-017-06867-9.
  • 28 Zhu XR, Deng TZ, Pang JL, Liu B, Ke J. Effect of high positive acceleration (+Gz) environment on dental implant osseointegration: a preliminary animal study. Biomed Environ Sci 2019; 32 (09) 687-698 DOI: 10.3967/bes2019.087.
  • 29 Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16 (01) 51 DOI: 10.1186/s13018-020-02177-5.
  • 30 Blanc-Sylvestre N, Bouchard P, Chaussain C. et al. biomedicines Pre-clinical models in implant dentistry: past, present. future. Biomedicines 2021; 9 (11) 1538 DOI: 10.3390/biomedicines9111538.
  • 31 Yi C, Hao KY, Ma T, Lin Y, Ge XY, Zhang Y. Inhibition of cathepsin K promotes osseointegration of titanium implants in ovariectomised rats. Sci Rep 2017; 7 (01) 44682 DOI: 10.1038/srep44682.
  • 32 Schwarz F, Sculean A, Engebretson SP, Becker J, Sager M. Animal models for peri-implant mucositis and peri-implantitis. Periodontol 2000 2015; 68 (01) 168-181 DOI: 10.1111/prd.12064.
  • 33 Seong WJ, Kotsakis G, Huh JK. et al. Clinical and microbiologic investigation of an expedited peri-implantitis dog model: an animal study. BMC Oral Health 2019; 19 (01) 150 DOI: 10.1186/s12903-019-0837-y.
  • 34 Caetano GM, Pauletto P, Mezzomo LA, Rivaldo EG. Crestal bone changes in different implants designs: a prospective clinical trial. Eur J Dent 2019; 13 (04) 497-502 DOI: 10.1055/s-0039-1697216.
  • 35 Tian T, Liu HH, Zhang ZH, Han Q, Chen J, Lv J. Correlation between bone volume fraction in posterior implant area and initial implant stability. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133 (04) 396-401 DOI: 10.1016/j.oooo.2021.08.008.
  • 36 Muhammad AMA, Ibrahim N, Ahmad R. et al. Effect of reconstruction parameters on cone beam CT trabecular bone microstructure quantification in sheep. BMC Oral Health 2020; 20 (01) 48 DOI: 10.1186/s12903-020-1035-7.
  • 37 Kang SR, Bok SC, Choi SC. et al. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci 2016; 46 (02) 116-127 DOI: 10.5051/jpis.2016.46.2.116.
  • 38 Lekholm U, Zarb GA. Patient selection and preparation. Tissue integrated prostheses: osseointegration in clinical dentistry. In: Branemark PI, Zarb GA, Albrektsson T. editor Chicago: Quintessence Publishing Company. 1985: 199-209
  • 39 Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent 2009; 18 (06) 480-485 DOI: 10.1097/ID.0b013e3181bb840d.
  • 40 Huang Y, Dessel JV, Depypere M. et al. Validating cone-beam computed tomography for peri-implant bone morphometric analysis. Bone Res 2014; 2 (February): 14010 DOI: 10.1038/boneres.2014.10.
  • 41 Pinotti FE, de Oliveira GJPL, Aroni MAT, Marcantonio RAC, Marcantonio Jr E. Analysis of osseointegration of implants with hydrophilic surfaces in grafted areas: A Preclinical study. Clin Oral Implants Res 2018; 29 (10) 963-972 DOI: 10.1111/clr.13361.