CC BY 4.0 · Arq Neuropsiquiatr 2022; 80(07): 741-758
DOI: 10.1055/s-0042-1757692
Brazilian Academy of Neurology

Brazilian practice guidelines for stroke rehabilitation: Part II

Diretrizes brasileiras para reabilitação no acidente vascular cerebral: parte II
1   Hospital Carlos Fernando Malzoni, Matão SP, Brazil.
2   Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
3   Instituto Você sem AVC, Matão SP, Brazil.
,
4   Universidade Federal do Triângulo Mineiro, Departamento de Fisioterapia Aplicada, Uberaba MG, Brazil.
,
5   Universidade Federal do Rio Grande do Norte, Faculdade de Ciências da Saúde do Trairi, Santa Cruz RN, Brazil.
,
6   Universidade de Fortaleza, Hospital São Carlos, Fortaleza CE, Brazil.
,
7   Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu SP, Brazil.
,
8   Hospital Israelita Albert Einstein, Unidade Goiânia, Goiânia GO, Brazil.
9   Hospital Santa Helena, Goiânia GO, Brazil.
10   Hospital Encore, Goiânia GO, Brazil.
11   Hospital Estadual Geral de Goiânia Dr. Alberto Rassi, Goiânia GO, Brazil.
12   Hospital de Urgência de Goiânia, Goiânia, GO, Brazil.
,
13   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Neurologia, São Paulo SP, Brazil.
14   Pontíficia Universidade Católica de São Paulo, Faculdade de Ciências Humanas e da Saúde, São Paulo SP, Brazil.
,
15   Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Fala, Linguagem e Ciências Auditivas, São Paulo SP, Brazil.
,
16   Universidade Federal do Paraná, Complexo Hospital de Clínicas, Curitiba PR, Brazil.
,
7   Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu SP, Brazil.
,
4   Universidade Federal do Triângulo Mineiro, Departamento de Fisioterapia Aplicada, Uberaba MG, Brazil.
,
17   Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Serviço de Neurologia Vascular e Emergências Neurológicas, Ribeirão Preto SP, Brazil.
,
18   Leeds Beckett University, Leeds, United Kingdom.
,
7   Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu SP, Brazil.
,
19   Universidade de São Paulo, Hospital das Clínicas, Divisão de Neurologia Clínica, São Paulo SP, Brazil.
20   Hospital Israelita Albert Einstein, São Paulo SP, Brazil.
,
21   Universidade de Fortaleza, Programa de Pos-Graduação em Ciências Médicas, Fortaleza CE, Brazil.
,
21   Universidade de Fortaleza, Programa de Pos-Graduação em Ciências Médicas, Fortaleza CE, Brazil.
,
21   Universidade de Fortaleza, Programa de Pos-Graduação em Ciências Médicas, Fortaleza CE, Brazil.
,
22   Universidade Federal do Piauí, Departamento de Neurologia, Teresina PI, Brazil.
,
23   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil.
,
23   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil.
,
23   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil.
,
23   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil.
,
24   Universidade Estadual de São Paulo, Faculdade de Medicina de Botucatu, Hospital das Clínicas, Departamento de Neurologia, Psicologia e Psiquiatria, São Paulo SP, Brazil.
,
25   Hospital Santa Paula, São Paulo SP, Brazil.
,
26   Universidade Federal Fluminense, Niterói RJ, Brazil.
27   Rush University, Chicago, United States.
,
26   Universidade Federal Fluminense, Niterói RJ, Brazil.
,
26   Universidade Federal Fluminense, Niterói RJ, Brazil.
,
28   Universidade Federal do Ceará, Departamento de Fisioterapia, Fortaleza CE, Brazil.
,
29   Universidade Federal de São Paulo SP, São Paulo, Brazil.
,
20   Hospital Israelita Albert Einstein, São Paulo SP, Brazil.
29   Universidade Federal de São Paulo SP, São Paulo, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
,
30   Hospital Geral de Fortaleza, Faculdade de Medicina Unichristus, Fortaleza CE, Brazil.
,
31   Rede Brasil AVC, Porto Alegre RS, Brazil.
32   Hospital Moinhos de Vento, Departamento de Neurologia, Porto Alegre RS, Brazil.
33   Hospital de Clínicas de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil.
,
7   Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu SP, Brazil.
› Institutsangaben

Abstract

The Brazilian Practice Guidelines for Stroke Rehabilitation – Part II, developed by the Scientific Department of Neurological Rehabilitation of the Brazilian Academy of Neurology (Academia Brasileira de Neurologia, in Portuguese), focuses on specific rehabilitation techniques to aid recovery from impairment and disability after stroke. As in Part I, Part II is also based on recently available evidence from randomized controlled trials, systematic reviews, meta-analyses, and other guidelines. Part II covers disorders of communication, dysphagia, postural control and balance, ataxias, spasticity, upper limb rehabilitation, gait, cognition, unilateral spatial neglect, sensory impairments, home rehabilitation, medication adherence, palliative care, cerebrovascular events related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the future of stroke rehabilitation, and stroke websites to support patients and caregivers. Our goal is to provide health professionals with more recent knowledge and recommendations for better rehabilitation care after stroke.

Resumo

As Diretrizes Brasileiras de Reabilitação do Acidente Vascular Cerebral (AVC) - Parte II, desenvolvida pelo Departamento Científico de Reabilitação Neurológica da Academia Brasileira de Neurologia é voltada para intervenções específicas de técnicas de reabilitação de déficits neurológicos e incapacidades. Seguindo o mesmo modelo da Parte I, a Parte II também se baseia em estudos randomizados, revisões sistemáticas, metanálises e outras diretrizes sobre o mesmo tema. A segunda parte aborda os distúrbios da comunicação, disfagia, controle postural e equilíbrio, ataxias, espasticidade, reabilitação do membro superior, marcha, cognição, negligência espacial unilateral, déficits sensoriais, reabilitação domiciliar, aderência ao uso de medicamentos, cuidados paliativos, o futuro da reabilitação no AVC, e websites de orientação sobre AVC para pacientes e cuidadores. Nosso objetivo é fornecer aos profissionais envolvidos na reabilitação conhecimento atualizado e recomendações para um melhor cuidado no pós-AVC.

Authors' Contributions

Introduction – CM, RZ: conceptualization, writing, review, editing, and validation of the original draft. Disorders of communication: aphasia, dysarthria, and apraxia of speech – LIZM, KZO: conceptualization, writing, review, editing, and validation of the original draft; MCL: participation as reviewer. Dysphagia – PWT: conceptualization, writing, review, editing, and validation of the original draft. Postural control and balance – LAPSS: conceptualization, writing, review, editing, and validation of the original draft; ROC: participation as reviewer. Ataxias – LAPSS: conceptualization, writing, review, editing, and validation of the original draft; ROC: participation as reviewer. Spasticity – CM: conceptualization, writing, review, editing, and validation of the original draft; MCL: participation as reviewer. Upper limb – CM, ABC, ROC: conceptualization, writing, review, editing, and validation of the original draft. Mobility – ROC, DMCC, RDMC, CM: conceptualization, writing, review, editing, and validation of the original draft. Cognition – FMMC, BSC, NAFF: conceptualization, writing, review, editing, and validation of the original draft; KJA: participation as reviewer. Unilateral spatial neglect – GJL: conceptualization, writing, review, editing, and validation of the original draft. Sensory impairment (hearing, vision, and touch) – ES, TPO, CM, MEPP: conceptualization, writing, review, editing, and validation of the original draft; KJA: participation as reviewer. Rehabilitation continuity: home rehabilitation, return to leisure, work, and driving – SSC, LAPSS, GJL: conceptualization, writing, review, editing, and validation of the original draft. Medication adherence – MHST, BCO, BGRBO: conceptualization, writing, review, editing and validation of the original draft. Palliative care – LON, LCGL, CGL: conceptualization, writing, review, editing, and validation of the original draft. Cerebrovascular events related to SARS-CoV-2 infection – JBCA, GSS: conceptualization, writing, review, editing, and validation of the original draft; RB: participation as reviewer. Future of stroke rehabilitation – ABC, GJL, ROC: conceptualization, writing, review, editing, and validation of the original draft. Suggested sites for patients and caregivers – LON: conceptualization, writing, review, editing, and validation of the original draft. Participation as reviwers of the entire paper: OMPN, JJFC, SCOM. CM: general coordinator; CM, RB, LON, MTP, SCSAM, ROC, GJL: coordinating group; RB: standardization and guideline coordinator; RB, CM, LON, MTP, SCSAM, ROC, GJL: standards and guidelines council; execution: Scientific Department of Neurological Rehabilitation of the Brazilian Academy of Neurology.


Supplementary Material



Publikationsverlauf

Eingereicht: 04. Februar 2022

Angenommen: 18. Mai 2022

Artikel online veröffentlicht:
29. September 2022

© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020; 21 (20) 7609 . Doi: 10.3390/ijms21207609
  • 2 Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet 2011;377(9778):1693–1702. Doi: 10.1016/S0140-6736(11)60325-5
  • 3 Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry 1983; 46 (06) 521-524 . Doi: 10.1136/jnnp.46.6.521
  • 4 Kwakkel G, Kollen B, Twisk J. Impact of time on improvement of outcome after stroke. Stroke 2006; 37 (09) 2348-2353
  • 5 Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 2004; 22 (3-5): 281-299
  • 6 Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006; 19 (01) 84-90 . Doi: 10.1097/01.wco.0000200544.29915.cc
  • 7 Veerbeek JM, van Wegen E, van Peppen R. et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9 (02) e87987 . Doi: 10.1371/journal.pone.0087987
  • 8 Winstein CJ, Stein J, Arena R. et al; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016; 47 (06) e98-e169
  • 9 Flowers HL, Skoretz SA, Silver FL. et al. Poststroke Aphasia Frequency, Recovery, and Outcomes: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2016; 97 (12) 2188-2201.e8 . Doi: 10.1016/j.apmr.2016.03.006
  • 10 Brady MC, Kelly H, Godwin J, Enderby P, Campbell P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev 2016; 2016 (06) CD000425 . Doi: 10.1002/14651858.CD000425.pub4
  • 11 Godecke E, Armstrong E, Rai T. et al; VERSE Collaborative Group. A randomized control trial of intensive aphasia therapy after acute stroke: The Very Early Rehabilitation for SpEech (VERSE) study. Int J Stroke 2021; 16 (05) 556-572 . Doi: 10.1177/1747493020961926
  • 12 Ballard KJ, Wambaugh JL, Duffy JR. et al. Treatment for Acquired Apraxia of Speech: A Systematic Review of Intervention Research Between 2004 and 2012. Am J Speech Lang Pathol 2015; 24 (02) 316-337 . Doi: 10.1044/2015_AJSLP-14-0118
  • 13 Mitchell C, Bowen A, Tyson S, Butterfint Z, Conroy P. Interventions for dysarthria due to stroke and other adult-acquired, non-progressive brain injury. Cochrane Database Syst Rev 2017; 1 (01) CD002088
  • 14 Chiaramonte R, Vecchio M. Dysarthria and stroke. The effectiveness of speech rehabilitation. A systematic review and meta-analysis of the studies. Eur J Phys Rehabil Med 2021; 57 (01) 24-43 . Doi: 10.23736/S1973-9087.20.06242-5
  • 15 Lefaucheur JP, Aleman A, Baeken C. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131 (02) 474-528
  • 16 Elsner B, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: a systematic review with network meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2020; 17 (01) 88 . Doi: 10.1186/s12984-020-00708-z
  • 17 Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17 (11) 1091-1107
  • 18 Kim WJ, Rosselin C, Amatya B, Hafezi P, Khan F. Repetitive transcranial magnetic stimulation for management of post-stroke impairments: An overview of systematic reviews. J Rehabil Med 2020; 52 (02) jrm00015 . Doi: 10.2340/16501977-2637
  • 19 Terranova C, Rizzo V, Cacciola A. et al. Is There a Future for Non-invasive Brain Stimulation as a Therapeutic Tool?. Front Neurol 2019; 9: 1146 . Doi: 10.3389/fneur.2018.01146
  • 20 Sebastianelli L, Versace V, Martignago S. et al. Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review. Acta Neurol Scand 2017; 136 (06) 585-605 . Doi: 10.1111/ane.12773
  • 21 Zhang X, Shu B, Zhang D, Huang L, Fu Q, Du G. The Efficacy and Safety of Pharmacological Treatments for Post-stroke Aphasia. CNS Neurol Disord Drug Targets 2018; 17 (07) 509-521 . Doi: 10.2174/1871527317666 180706143051
  • 22 Zhang J, Wei R, Chen Z, Luo B. Piracetam for Aphasia in Post-stroke Patients: A Systematic Review and Meta-analysis of Randomized Controlled Trials. CNS Drugs 2016; 30 (07) 575-587 . Doi: 10.1007/s40263-016-0348-1
  • 23 Pacheco-Castilho AC, Vanin GM, Dantas RO, Pontes-Neto OM, Martino R. Dysphagia and Associated Pneumonia in Stroke Patients from Brazil: A Systematic Review. Dysphagia 2019; 34 (04) 499-520 . Doi: 10. 1007 /s00455–019–10021–0
  • 24 Donovan NJ, Daniels SK, Edmiaston J, Weinhardt J, Summers D, Mitchell PH. American Heart Association Council on Cardiovascular Nursing and Stroke Council. Dysphagia screening: state of the art: invitational conference proceeding from the State-of-the-Art Nursing Symposium, International Stroke Conference 2012. Stroke 2013; 44 (04) e24-e31 . Doi: 10.1161/STR.0b013e3182877f57
  • 25 Singh S, Hamdy S. Dysphagia in stroke patients. Postgrad Med J 2006;82(968):383–391. Doi: 10.1136/pgmj.2005.043281
  • 26 Pisegna JM, Murray J. Clinical Application of Flexible Endoscopic Evaluation of Swallowing in Stroke. Semin Speech Lang 2018; 39 (01) 3-14 . Doi: 10.1055/s-0037-1608855
  • 27 Saconato M, Leite FC, Lederman HM, Chiari BM, Gonçalves MIR. Temporal and Sequential Analysis of the Pharyngeal Phase of Swallowing in Poststroke Patients. Dysphagia 2020; 35 (04) 598-615 . Doi: 10.1007/s00455-019-10069-y
  • 28 Bath PM, Lee HS, Everton LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev 2018; 10 (10) CD000323 . Doi: 10.1002/14651858.CD000323.pub3
  • 29 Bakhtiyari J, Sarraf P, Nakhostin-Ansari N. et al. Effects of early intervention of swallowing therapy on recovery from dysphagia following stroke. Iran J Neurol 2015; 14 (03) 119-124
  • 30 Chen YW, Chang KH, Chen HC, Liang WM, Wang YH, Lin YN. The effects of surface neuromuscular electrical stimulation on post-stroke dysphagia: a systemic review and meta-analysis. Clin Rehabil 2016; 30 (01) 24-35 . Doi: 10.1177/0269215515571681
  • 31 Chiang CF, Lin MT, Hsiao MY, Yeh YC, Liang YC, Wang TG. Comparative Efficacy of Noninvasive Neurostimulation Therapies for Acute and Subacute Poststroke Dysphagia: A Systematic Review and Network Meta-analysis. Arch Phys Med Rehabil 2019; 100 (04) 739-750.e4 . Doi: 10.1016/j.apmr.2018.09.117
  • 32 Marchina S, Pisegna JM, Massaro JM. et al. Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2021; 268 (01) 293-304 . Doi: 10.1007/s00415-020-10142-9
  • 33 Tasseel-Ponche S, Yelnik AP, Bonan IV. Motor strategies of postural control after hemispheric stroke. Neurophysiol Clin 2015;45(4-5):327–333. Doi: 10.1016/j.neucli.2015.09.003
  • 34 Van Criekinge T, Saeys W, Vereeck L, De Hertogh W, Truijen S. Are unstable support surfaces superior to stable support surfaces during trunk rehabilitation after stroke? A systematic review. Disabil Rehabil 2018; 40 (17) 1981-1988 . Doi: 10.1080/09638288.2017.1323030
  • 35 Van Criekinge T, Truijen S, Schröder J. et al. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil 2019; 33 (06) 992-1002 . Doi: 10.1177/0269215519830159
  • 36 Zhang B, Li D, Liu Y, Wang J, Xiao Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. J Adv Nurs 2021; 77 (08) 3255-3273 . Doi: 10.1111/jan.14800
  • 37 Mohammadi R, Semnani AV, Mirmohammadkhani M, Grampurohit N. Effects of Virtual Reality Compared to Conventional Therapy on Balance Poststroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2019; 28 (07) 1787-1798
  • 38 Schröder J, van Criekinge T, Embrechts E. et al. Combining the benefits of tele-rehabilitation and virtual reality-based balance training: a systematic review on feasibility and effectiveness. Disabil Rehabil Assist Technol 2019; 14 (01) 2-11
  • 39 Chae CS, Jun JH, Im S, Jang Y, Park GY. Effectiveness of Hydrotherapy on Balance and Paretic Knee Strength in Patients With Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Phys Med Rehabil 2020; 99 (05) 409-419
  • 40 Da Campo L, Hauck M, Marcolino MAZ, Pinheiro D, Plentz RDM, Cechetti F. Effects of aerobic exercise using cycle ergometry on balance and functional capacity in post-stroke patients: a systematic review and meta-analysis of randomised clinical trials. Disabil Rehabil 2021; 43 (11) 1558-1564 . Doi: 10.1080/09638288.2019.1670272
  • 41 Tally Z, Boetefuer L, Kauk C, Perez G, Schrand L, Hoder J. The efficacy of treadmill training on balance dysfunction in individuals with chronic stroke: a systematic review. Top Stroke Rehabil 2017; 24 (07) 539-546
  • 42 Schröder J, Truijen S, Van Criekinge T, Saeys W. Peripheral somatosensory stimulation and postural recovery after stroke - a systematic review. Top Stroke Rehabil 2018; 25 (04) 312-320 . Doi: 10.1080/10749357.2018.1440694
  • 43 Moucheboeuf G, Griffier R, Gasq D. et al. Effects of robotic gait training after stroke: A meta-analysis. Ann Phys Rehabil Med 2020; 63 (06) 518-534 . Doi: 10.1016/j.rehab.2020.02.008
  • 44 Kang N, Lee RD, Lee JH, Hwang MH. Functional Balance and Postural Control Improvements in Patients With Stroke After Noninvasive Brain Stimulation: A Meta-analysis. Arch Phys Med Rehabil 2020; 101 (01) 141-153 . Doi: 10.1016/j.apmr.2019.09.003
  • 45 Navarro-López V, Molina-Rueda F, Jiménez-Jiménez S, Alguacil-Diego IM, Carratalá-Tejada M. Effects of Transcranial Direct Current Stimulation Combined with Physiotherapy on Gait Pattern, Balance, and Functionality in Stroke Patients. A Systematic Review. Diagnostics (Basel) 2021; 11 (04) 656 . Doi: 10.3390/diagnostics11040656
  • 46 Li RQ, Li ZM, Tan JY, Chen GL, Lin WY. Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials. Complement Ther Clin Pract 2017; 28: 75-84 . Doi: 10.1016/j.ctcp.2017.05.009
  • 47 Hugues A, Di Marco J, Ribault S. et al. Limited evidence of physical therapy on balance after stroke: A systematic review and meta-analysis. PLoS One 2019; 14 (08) e0221700 . Doi: 10.1371/journal.pone.0221700
  • 48 Richards L, Senesac C, McGuirk T. et al. Response to intensive upper extremity therapy by individuals with ataxia from stroke. Top Stroke Rehabil 2008; 15 (03) 262-271 . Doi: 10.1310/tsr1503-262
  • 49 Belas Dos Santos M, Barros de Oliveira C, Dos Santos A, Garabello Pires C, Dylewski V, Arida RM. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav Neurol 2018; 2018: 2892065 . Doi: 10.1155/2018/2892065
  • 50 Kim WS, Jung SH, Oh MK, Min YS, Lim JY, Paik NJ. Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: A pilot study. J Rehabil Med 2014; 46 (05) 418-423 . Doi: 10.2340/16501977-1802
  • 51 Nam KE, Lim SH, Kim JS. et al. When does spasticity in the upper limb develop after a first stroke? A nationwide observational study on 861 stroke patients. J Clin Neurosci 2019; 66: 144-148 . Doi: 10.1016/j.jocn.2019.04.034
  • 52 Morris S. Ashworth and Tardieu Scales: Their Clinical Relevance for Measuring Spasticity in Adult and Paediatric Neurological Populations. Phys Ther Rev 2002; 7 (01) 53-62 . Doi: 10. 1179/ 108331902125001770
  • 53 Hara T, Momosaki R, Niimi M, Yamada N, Hara H, Abo M. Botulinum Toxin Therapy Combined with Rehabilitation for Stroke: A Systematic Review of Effect on Motor Function. Toxins (Basel) 2019; 11 (12) 707 . Doi: 10.3390/toxins11120707
  • 54 Lindsay C, Kouzouna A, Simcox C, Pandyan AD. Pharmacological interventions other than botulinum toxin for spasticity after stroke. Cochrane Database Syst Rev 2016; 10 (10) CD010362 . Doi: 10.1002/14651858
  • 55 Andringa A, van de Port I, van Wegen E, Ket J, Meskers C, Kwakkel G. Effectiveness of Botulinum Toxin Treatment for Upper Limb Spasticity Poststroke Over Different ICF Domains: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2019; 100 (09) 1703-1725 . Doi: 10.1016/j.apmr.2019.01.016
  • 56 Santamato A, Cinone N, Panza F. et al. Botulinum Toxin Type A for the Treatment of Lower Limb Spasticity after Stroke. Drugs 2019; 79 (02) 143-160 . Doi: 10.1007/s40265-018-1042-z
  • 57 Gupta AD, Chu WH, Howell S. et al. A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity. Syst Rev 2018; 7 (01) 1 . Doi: 10.1186/s13643-017-0670-9
  • 58 Francisco GE, Balbert A, Bavikatte G. et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J Rehabil Med 2021; 53 (01) jrm00134 . Doi: 10.2340/16501977-2753
  • 59 Creamer M, Cloud G, Kossmehl P. et al. Effect of Intrathecal Baclofen on Pain and Quality of Life in Poststroke Spasticity. Stroke 2018; 49 (09) 2129-2137
  • 60 Bai YL, Hu YS, Wu Y. et al. Long-term three-stage rehabilitation intervention alleviates spasticity of the elbows, fingers, and plantar flexors and improves activities of daily living in ischemic stroke patients: a randomized, controlled trial. Neuroreport 2014; 25 (13) 998-1005 . Doi: 10.1097/WNR.0000000000000194
  • 61 Huang YC, Chen PC, Tso HH, Yang YC, Ho TL, Leong CP. Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study. Eur J Phys Rehabil Med 2019; 55 (05) 551-557 . Doi: 10.23736/S1973-9087.19.05684-3
  • 62 Basaran A, Emre U, Karadavut KI, Balbaloglu O, Bulmus N. Hand splinting for poststroke spasticity: a randomized controlled trial. Top Stroke Rehabil 2012; 19 (04) 329-337 . Doi: 10.1310/tsr1904-329
  • 63 Mahmood A, Veluswamy SK, Hombali A, Mullick A, N. M, Solomon JM. Effect of Transcutaneous Electrical Nerve Stimulation on Spasticity in Adults With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2019; 100 (04) 751-768 . Doi: 10.1016/j.apmr.2018.10.016
  • 64 You G, Liang H, Yan T. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living. NeuroRehabilitation 2014; 35 (03) 381-389 . Doi: 10.3233/NRE-141129
  • 65 Zhu Y, Yang Y, Li J. Does acupuncture help patients with spasticity? A narrative review. Ann Phys Rehabil Med 2019; 62 (04) 297-301 . Doi: 10.1016/j.rehab.2018.09.010
  • 66 Hatem SM, Saussez G, Della Faille M. et al. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016; 10: 442 https://doi.org/ . Doi: 10.3389/fnhum.2016.00442
  • 67 Díaz-Arribas MJ, Martín-Casas P, Cano-de-la-Cuerda R, Plaza-Manzano G. Effectiveness of the Bobath concept in the treatment of stroke: a systematic review. Disabil Rehabil 2020; 42 (12) 1636-1649
  • 68 Harris JE, Eng JJ. Strength training improves upper-limb function in individuals with stroke: a meta-analysis. Stroke 2010; 41 (01) 136-140 . Doi: 10.1161/ STROKEAHA.109.567438
  • 69 Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin Rehabil 2020; 34 (09) 1173-1197 . Doi: 10.1177/0269215520932964
  • 70 Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 2015; ; ( (10) CD004433
  • 71 Liu XH, Huai J, Gao J, Zhang Y, Yue SW. Constraint-induced movement therapy in treatment of acute and sub-acute stroke: a meta-analysis of 16 randomized controlled trials. Neural Regen Res 2017; 12 (09) 1443-1450 . Doi: 10.4103/1673-5374.215255
  • 72 Molier BI, Van Asseldonk EH, Hermens HJ, Jannink MJ. Nature, timing, frequency and type of augmented feedback; does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disabil Rehabil 2010; 32 (22) 1799-1809 . Doi: 10.3109/ 09638281 003734359
  • 73 Thieme H, Morkisch N, Mehrholz J. et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 2018; 7 (07) CD008449
  • 74 Luo Z, Zhou Y, He H. et al. Synergistic Effect of Combined Mirror Therapy on Upper Extremity in Patients With Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11: 155 . Doi: 10.3389/fneur.2020.00155
  • 75 Stockley RC, Jarvis K, Boland P, Clegg AJ. Systematic Review and Meta-Analysis of the Effectiveness of Mental Practice for the Upper Limb After Stroke: Imagined or Real Benefit?. Arch Phys Med Rehabil 2021; 102 (05) 1011-1027 . Doi: 10.1016/j.apmr.2020.09.391
  • 76 Chen PM, Kwong PWH, Lai CKY, Ng SSM. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS One 2019; 14 (05) e0216357
  • 77 Conforto AB, Dos Anjos SM, Bernardo WM. et al. Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2018; 32 (10) 863-871 . Doi: 10.1177/1545968318798943
  • 78 Bai X, Guo Z, He L, Ren L, McClure MA, Mu Q. Different Therapeutic Effects of Transcranial Direct Current Stimulation on Upper and Lower Limb Recovery of Stroke Patients with Motor Dysfunction: A Meta-Analysis. Neural Plast 2019; 2019: 1372138 . Doi: 10.1155/2019/ 1372138
  • 79 van Lieshout ECC, van der Worp HB, Visser-Meily JMA, Dijkhuizen RM. Timing of Repetitive Transcranial Magnetic Stimulation Onset for Upper Limb Function After Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10: 1269 . Doi: 10.3389/fneur.2019.01269
  • 80 Eraifej J, Clark W, France B, Desando S, Moore D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev 2017; 6 (01) 40 . Doi: 10.1186/s13643-017-0435-5
  • 81 Lee SH, Jung H-Y, Yun SJ, Oh B-M, Seo HG. Upper extremity rehabilitation using fully immersive virtual reality games with a head mount display: a feasibility study. PM R 2020; 12 (03) 257-262 . Doi: 10.1002/pmrj.12206
  • 82 Karamians R, Proffitt R, Kline D, Gauthier LV. Effectiveness of Virtual Reality- and Gaming-Based Interventions for Upper Extremity Rehabilitation Poststroke: A Meta-analysis. Arch Phys Med Rehabil 2020; 101 (05) 885-896 . Doi: 10.1016/j.apmr.2019.10.195
  • 83 Dehem S, Montedoro V, Edwards MG. et al. Development of a robotic upper limb assessment to configure a serious game. NeuroRehabilitation 2019; 44 (02) 263-274
  • 84 Hocine N, Gouaïch A, Cerri SA. et al. Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes. User Model User-adapt Interact 2015; 25 (01) 65-98
  • 85 Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2017; 11 (11) CD008349 . Doi: 10.1002/14651858.CD008349.pub4
  • 86 Doumas I, Everard G, Dehem S, Lejeune T. Serious games for upper limb rehabilitation after stroke: a meta-analysis. J Neuroeng Rehabil 2021; 18 (01) 100 . Doi: 10.1186/s12984-021-00889-1
  • 87 Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther 2021 Apr 4;101(04):pzab010. Doi: 10.1093/ptj/pzab010
  • 88 EFFECTS Trial Collaboration. Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020; 19 (08) 661-669 . Doi: 10.1016/ S1474–4422(20)30219–2
  • 89 FOCUS Trial Collaboration. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet 2019;393(10168):265–274. Doi: 10.1016/S0140-6736(18)32823-X
  • 90 Beghi E, Binder H, Birle C. et al. European Academy of Neurology and European Federation of Neurorehabilitation Societies guideline on pharmacological support in early motor rehabilitation after acute ischaemic stroke. Eur J Neurol 2021; 28 (09) 2831-2845 . Doi: 10.1111/ene.14936
  • 91 Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC, Kwakkel G. EPOS Investigators. Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair 2011; 25 (03) 268-274 . Doi: 10.1177/ 1545968310384271
  • 92 Saunders DH, Sanderson M, Hayes S. et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2020; 3 (03) CD003316 . Doi: 10.1002/14651858.CD003316.pub7
  • 93 English C, Hillier SL, Lynch EA. Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev 2017; 6 (06) CD007513 . Doi: 10.1002/14651858.CD007513.pub3
  • 94 Ghai S, Ghai I. Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Sci Rep 2019; 9 (01) 2183 . Doi: 10.1038/ s41598–019–38723–3
  • 95 Nascimento LR, Flores LC, de Menezes KKP, Teixeira-Salmela LF. Water-based exercises for improving walking speed, balance, and strength after stroke: a systematic review with meta-analyses of randomized trials. Physiotherapy 2020; 107: 100-110 . Doi: 10.1016/j.physio.2019.10.002
  • 96 Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2017; 8 (08) CD002840 . Doi: 10.1002/14651858.CD002840.pub4
  • 97 Nascimento LR, Boening A, Galli A, Polese JC, Ada L. Treadmill walking improves walking speed and distance in ambulatory people after stroke and is not inferior to overground walking: a systematic review. J Physiother 2021; 67 (02) 95-104
  • 98 Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2020; 10 (10) CD006185 . Doi: 10.1002/14651858.CD006185.pub5
  • 99 Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-Assisted Training for Walking After Stroke: A Major Update of the Evidence. Stroke 2017; 52 (05) e153-e154 . Doi: 10.1161/STROKEAHA.120.033755
  • 100 Schröder J, Truijen S, Van Criekinge T, Saeys W. Feasibility and effectiveness of repetitive gait training early after stroke: A systematic review and meta-analysis. J Rehabil Med 2019; 51 (02) 78-88 . Doi: 10.2340/16501977-2505
  • 101 Silva S, Borges LR, Santiago L, Lucena L, Lindquist AR, Ribeiro T. Motor imagery for gait rehabilitation after stroke. Cochrane Database Syst Rev 2020; 9 (09) CD013019
  • 102 Yang A, Wu HM, Tang JL, Xu L, Yang M, Liu GJ. Acupuncture for stroke rehabilitation. Cochrane Database Syst Rev 2016; 2016 (08) CD004131 . Doi: 10.1002/14651858.CD004131.pub3
  • 103 Tyson SF, Sadeghi-Demneh E, Nester CJ. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin Rehabil 2013; 27 (10) 879-891 . Doi: 10.1177/026921 5513486497
  • 104 de Paula GV, da Silva TR, de Souza JT. et al. Effect of ankle-foot orthosis on functional mobility and dynamic balance of patients after stroke: Study protocol for a randomized controlled clinical trial. Medicine (Baltimore) 2019; 98 (39) e17317
  • 105 Shahabi S, Shabaninejad H, Kamali M, Jalali M, Ahmadi Teymourlouy A. The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2020; 34 (02) 145-159 . Doi: 10.1177/ 026921551 9887784
  • 106 Daryabor A, Yamamoto S, Orendurff M, Kobayashi T. Effect of types of ankle-foot orthoses on energy expenditure metrics during walking in individuals with stroke: a systematic review. Disabil Rehabil 2022; 44 (02) 166-176 . Doi: 10.1080/09638288.2020.1762767
  • 107 Johnston TE, Keller S, Denzer-Weiler C, Brown L. A Clinical Practice Guideline for the Use of Ankle-Foot Orthoses and Functional Electrical Stimulation Post-Stroke. J Neurol Phys Ther 2021; 45 (02) 112-196
  • 108 Nascimento LR, da Silva LA, Araújo Barcellos JVM, Teixeira-Salmela LF. Ankle-foot orthoses and continuous functional electrical stimulation improve walking speed after stroke: a systematic review and meta-analyses of randomized controlled trials. Physiotherapy 2020; 109: 43-53 . Doi: 10.1016/j.physio.2020.08.002
  • 109 Jaqueline da Cunha M, Rech KD, Salazar AP, Pagnussat AS. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Ann Phys Rehabil Med 2021; 64 (01) 101388 . Doi: 10.1016/j.rehab.2020.03.012
  • 110 Beauchamp MK, Skrela M, Southmayd D. et al. Immediate effects of cane use on gait symmetry in individuals with subacute stroke. Physiother Can 2009; 61 (03) 154-160 . Doi: 10.3138/physio.61.3.154
  • 111 Avelino PR, Nascimento LR, Menezes KKP, Scianni AA, Ada L, Teixeira-Salmela LF. Effect of the provision of a cane on walking and social participation in individuals with stroke: protocol for a randomized trial. Braz J Phys Ther 2018; 22 (02) 168-173 . Doi: 10.1016/j.bjpt.2017.11.002
  • 112 Jeong YG, Jeong YJ, Myong JP, Koo JW. Which type of cane is the most efficient, based on oxygen consumption and balance capacity, in chronic stroke patients?. Gait Posture 2015; 41 (02) 493-498
  • 113 Caro CC, Costa JD, Cruz DMC. The use of mobility assistive devices and the functional independence in stroke patients. Cad Bras Ter Ocup. 2018; 26 (03) 558-568 . Doi: 10.4322/2526-8910.ctoao1117
  • 114 Madureira S, Guerreiro M, Ferro JM. Dementia and cognitive impairment three months after stroke. Eur J Neurol 2001; 8 (06) 621-627 . Doi: 10.1046/j.1468-1331.2001.00332.x
  • 115 Skrobot OA, O'Brien J, Black S. et al; VICCCS group. The Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement 2017; 13 (06) 624-633
  • 116 Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Wallin A, Dichgans M, Marler JR, Leblanc GG. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 2006; 37 (09) 2220-41 . Doi: 10.1161/01.STR.0000237236.88823.47 sep; Erratum in: Stroke. 2007 Mar;38(3):1118
  • 117 Lees R, Selvarajah J, Fenton C. et al. Test accuracy of cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke. Stroke 2014; 45 (10) 3008-3018 . Doi: 10.1161/STROKEAHA.114.005842
  • 118 Celis H, Fagard RH, Staessen JA, Thijs L. Systolic Hypertension in Europe Trial Investigators. Risk and benefit of treatment of isolated systolic hypertension in the elderly: evidence from the Systolic Hypertension in Europe Trial. Curr Opin Cardiol 2001; 16 (06) 342-348 . Doi: 10.1097/00001573-200111000-00005
  • 119 Yang Z, Wang H, Edwards D. et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: A systematic review and meta-analysis. Ageing Res Rev 2020; 57: 100962
  • 120 Gorelick PB, Scuteri A, Black SE. et al; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42 (09) 2672-2713
  • 121 Shu Y, He Q, Xie Y, Zhang W, Zhai S, Wu T. Cognitive Gains of Aerobic Exercise in Patients With Ischemic Cerebrovascular Disorder: A Systematic Review and Meta-Analysis. Front Cell Dev Biol 2020; 8: 582380 . Doi: 10.3389/fcell.2020.582380
  • 122 das Nair R, Cogger H, Worthington E, Lincoln NB. Cognitive rehabilitation for memory deficits after stroke. Cochrane Database Syst Rev 2016; 9 (09) CD002293 . Doi: 10.1002/14651858.CD002293.pub3
  • 123 Cappa SF, Benke T, Clarke S, Rossi B, Stemmer B, van Heugten CM. Task Force on Cognitive Rehabilitation, European Federation of Neurological Societies. EFNS guidelines on cognitive rehabilitation: report of an EFNS task force. Eur J Neurol 2005; 12 (09) 665-680 . Doi: 10.1111/j.1468-1331.2005.01330.x
  • 124 Bo W, Lei M, Tao S. et al. Effects of combined intervention of physical exercise and cognitive training on cognitive function in stroke survivors with vascular cognitive impairment: a randomized controlled trial. Clin Rehabil 2019; 33 (01) 54-63 . Doi: 10.1177/0269215518791007
  • 125 Faria AL, Pinho MS, Bermúdez I Badia S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized controlled trial with chronic stroke patients. J Neuroeng Rehabil 2020; 17 (01) 78 . Doi: 10.1186/s12984-020-00691-5
  • 126 Hung CY, Wu XY, Chung VC, Tang EC, Wu JC, Lau AY. Overview of systematic reviews with meta-analyses on acupuncture in post-stroke cognitive impairment and depression management. Integr Med Res 2019; 8 (03) 145-159 . Doi: 10.1016/j.imr.2019.05.001
  • 127 Hara T, Shanmugalingam A, McIntyre A, Burhan AM. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2021; 11 (02) 227 . Doi: 10.3390/diagnostics11020227
  • 128 Renton T, Tibbles A, Topolovec-Vranic J. Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review. PLoS One 2017; 12 (05) e0177290 . Doi: 10.1371/journal.pone.0177290
  • 129 Cubelli R. Definition: Spatial neglect. Cortex 2017; 92: 320-321 . Doi: 10.1016/j.cortex.2017.03.021
  • 130 Parton A, Malhotra P, Husain M. Hemispatial neglect. J Neurol Neurosurg Psychiatry 2004; 75 (01) 13-21
  • 131 Luvizutto GJ, Moliga AF, Rizzatti GRS. et al. Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity. Clinics (São Paulo) 2018; 73: e131 . Doi: 10.6061/clinics/2018/e131
  • 132 Dintén-Fernández A, Fernández-González P, Koutsou A, Alguacil-Diego IM, Laguarta-Val S, Molina-Rueda F. [Top-down and bottom-up approaches for the treatment of unilateral spatial neglect in stroke patients: A systematic review]. Rehabilitacion (Madr) 2019; 53 (02) 93-103 Spanish. Doi: 10.1016/j.rh.2018.10.001
  • 133 Ogourtsova T, Souza Silva W, Archambault PS, Lamontagne A. Virtual reality treatment and assessments for post-stroke unilateral spatial neglect: A systematic literature review. Neuropsychol Rehabil 2017; 27 (03) 409-454 . Doi: 10.1080/09602011.2015.1113187
  • 134 Kashiwagi FT, El Dib R, Gomaa H. et al. Noninvasive Brain Stimulations for Unilateral Spatial Neglect after Stroke: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Controlled Trials. Neural Plast 2018; 2018: 1638763 . Doi: 10.1155/2018/1638763
  • 135 Cotoi A, Mirkowski M, Iruthayarajah J, Anderson R, Teasell R. The effect of theta-burst stimulation on unilateral spatial neglect following stroke: a systematic review. Clin Rehabil 2019; 33 (02) 183-194 . Doi: 10.1177/0269215518804018
  • 136 Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2020; 11 (11) CD009645 . Doi: 10.1002/14651858.CD009645.pub4
  • 137 Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with stroke: characteristics, associated factors, and relationship with function. Neurorehabil Neural Repair 2008; 22 (02) 166-172 . Doi: 10.1177/1545968307305523
  • 138 Parker J, Mountain G, Hammerton J. A review of the evidence underpinning the use of visual and auditory feedback for computer technology in post-stroke upper-limb rehabilitation. Disabil Rehabil Assist Technol 2011; 6 (06) 465-472
  • 139 Kim HA, Yi HA, Lee H. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss. Cerebellum 2016; 15 (06) 781-788 . Doi: 10.1007/s12311-015-0745-x
  • 140 Kuo CL, Shiao AS, Wang SJ, Chang WP, Lin YY. Risk of sudden sensorineural hearing loss in stroke patients: A 5-year nationwide investigation of 44,460 patients. Medicine (Baltimore) 2016; 95 (36) e4841 . Doi: 10.1097/MD.0000000000004841
  • 141 Landi F, Onder G, Cesari M. et al; Silvernet-HC study group. Functional decline in frail community-dwelling stroke patients. Eur J Neurol 2006; 13 (01) 17-23
  • 142 Koohi N, Vickers D, Chandrashekar H, Tsang B, Werring D, Bamiou DE. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems. Disabil Rehabil 2017; 39 (06) 586-593
  • 143 Koohi N, Vickers D, Warren J, Werring D, Bamiou DE. Long-term use benefits of personal frequency-modulated systems for speech in noise perception in patients with stroke with auditory processing deficits: a non-randomised controlled trial study. BMJ Open 2017; 7 (04) e013003 . Doi: 10.1136/bmjopen-2016-013003
  • 144 Rowe FJ, Hepworth LR, Howard C, Hanna KL, Cheyne CP, Currie J. High incidence and prevalence of visual problems after acute stroke: An epidemiology study with implications for service delivery. PLoS One 2019; 14 (03) e0213035 . Doi: 10.1371/journal.pone.0213035
  • 145 Rowe FJ. VIS writing Group. Vision In Stroke cohort: Profile overview of visual impairment. Brain Behav 2017; 7 (11) e00771 . Doi: 10.1002/brb3.771
  • 146 Pollock A, Hazelton C, Rowe FJ. et al. Interventions for visual field defects in people with stroke. Cochrane Database Syst Rev 2019; 5 (05) CD008388 . Doi: 10.1002/14651858.CD008388.pub3
  • 147 Carey LM, Matyas TA, Baum C. Effects of Somatosensory Impairment on Participation After Stroke. Am J Occup Ther 2018; 72 (03) p1 , p10
  • 148 Kessner SS, Schlemm E, Cheng B. et al. Somatosensory Deficits After Ischemic Stroke. Stroke 2019; 50 (05) 1116-1123 . Doi: 10.1161/STROKEAHA.118.023750
  • 149 de Diego C, Puig S, Navarro X. A sensorimotor stimulation program for rehabilitation of chronic stroke patients. Restor Neurol Neurosci 2013; 31 (04) 361-371 . Doi: 10.3233/RNN-120250
  • 150 Chia FS, Kuys S, Low Choy N. Sensory retraining of the leg after stroke: systematic review and meta-analysis. Clin Rehabil 2019; 33 (06) 964-979 . Doi: 10.1177/0269215519836461
  • 151 Turville ML, Cahill LS, Matyas TA, Blennerhassett JM, Carey LM. The effectiveness of somatosensory retraining for improving sensory function in the arm following stroke: a systematic review. Clin Rehabil 2019; 33 (05) 834-846 . Doi: 10.1177/0269215519829795
  • 152 Chi NF, Huang YC, Chiu HY, Chang HJ, Huang HC. Systematic Review and Meta-Analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-Dwelling Patients With a Stroke. Arch Phys Med Rehabil 2020; 101 (02) 359-373
  • 153 Graef P, Michaelsen SM, Dadalt ML, Rodrigues DA, Pereira F, Pagnussat AS. Effects of functional and analytical strength training on upper-extremity activity after stroke: a randomized controlled trial. Braz J Phys Ther 2016; 20 (06) 543-552 . Doi: 10.1590/bjpt-rbf.2014.0187
  • 154 Hsieh YW, Chang KC, Hung JW, Wu CY, Fu MH, Chen CC. Effects of Home-Based Versus Clinic-Based Rehabilitation Combining Mirror Therapy and Task-Specific Training for Patients With Stroke: A Randomized Crossover Trial. Arch Phys Med Rehabil 2018; 99 (12) 2399-2407 . Doi: 10.1016/j.apmr.2018.03.017
  • 155 Rossit S, Benwell CSY, Szymanek L. et al. Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect. Neuropsychol Rehabil 2019; 29 (02) 251-272 . Doi: 10.1080/ 09602011.2016.1273119
  • 156 Thielbar KO, Triandafilou KM, Barry AJ. et al. Home-based Upper Extremity Stroke Therapy Using a Multiuser Virtual Reality Environment: A Randomized Trial. Arch Phys Med Rehabil 2020; 101 (02) 196-203 . Doi: 10.1016/j.apmr.2019.10.182
  • 157 Zondervan DK, Friedman N, Chang E. et al. Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J Rehabil Res Dev 2016; 53 (04) 457-472 . Doi: 10.1682/JRRD.2015.04.0057
  • 158 Huang HC, Huang YC, Lin MF. et al. Effects of Home-Based Supportive Care on Improvements in Physical Function and Depressive Symptoms in Patients With Stroke: A Meta-Analysis. Arch Phys Med Rehabil 2017; 98 (08) 1666-1677.e1 . Doi: 10.1016/j.apmr.2017.03.014
  • 159 Nascimento LR, Scianni AA, Ada L, Fantauzzi MO, Hirochi TL, Teixeira-Salmela LF. Predictors of return to work after stroke: a prospective, observational cohort study with 6 months follow-up. Disabil Rehabil 2021; 43 (04) 525-529 . Doi: 10.1080/09638288.2019.1631396
  • 160 Ntsiea MV, Van Aswegen H, Lord S, Olorunju S S. The effect of a workplace intervention programme on return to work after stroke: a randomised controlled trial. Clin Rehabil 2015; 29 (07) 663-673 . Doi: 10.1177/0269215514554241
  • 161 Johansson U, Hellman T, Öst Nilsson A, Eriksson G. The ReWork-Stroke rehabilitation programme described by use of the TIDieR checklist. Scand J Occup Ther 2021; 28 (05) 375-383 . Doi: 10.1080/11038128.2020.1790654
  • 162 George S, Crotty M, Gelinas I, Devos H. Rehabilitation for improving automobile driving after stroke. Cochrane Database Syst Rev 2014; 2014 (02) CD008357 . Doi: 10.1002/14651858.CD008357.pub2
  • 163 Jung NH, Kim H, Chang M. Muscle activation of drivers with hemiplegia caused by stroke while driving using a steering wheel or knob. J Phys Ther Sci 2015; 27 (04) 1009-1011 . Doi: 10.1589/jpts.27.1009
  • 164 Sabaté E. Adherence to Long-Term Therapies: Evidence for Action. World Health Organization (WHO). Geneva, Switzerland: World Health Organization (WHO); 2003: 1-209 p.
  • 165 Ozaki AF, Choi AS, Le QT. et al. Real-World Adherence and Persistence to Direct Oral Anticoagulants in Patients With Atrial Fibrillation: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes 2020; 13 (03) e005969 . Doi: 10.1161/CIRCOUTCOMES.119.005969
  • 166 Xu T, Yu X, Ou S. et al. Adherence to Antihypertensive Medications and Stroke Risk: A Dose-Response Meta-Analysis. J Am Heart Assoc 2017; 6 (07) e006371 . Doi: 10.1161/ JAHA.117.006371
  • 167 Aarnio K, Haapaniemi E, Melkas S, Kaste M, Tatlisumak T, Putaala J. Long-term mortality after first-ever and recurrent stroke in young adults. Stroke 2014; 45 (09) 2670-2676 . Doi: 10.1161/STROKEAHA.114.005648
  • 168 Adler AJ, Martin N, Mariani J. et al. Mobile phone text messaging to improve medication adherence in secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2017; 4 (04) CD011851 . Doi: 10.1002/14651858.CD011851.pub2
  • 169 Kraft P, Hillmann S, Rücker V, Heuschmann PU. Telemedical strategies for the improvement of secondary prevention in patients with cerebrovascular events-A systematic review and meta-analysis. Int J Stroke 2017; 12 (06) 597-605 . Doi: 10.1177/1747493017706188
  • 170 Wessol JL, Russell CL, Cheng AL. A Systematic Review of Randomized Controlled Trials of Medication Adherence Interventions in Adult Stroke Survivors. J Neurosci Nurs 2017; 49 (02) 120-133 . Doi: 10.1097/ JNN.0000000000000266
  • 171 World Health Organization definition of palliative care. Accessed on September 18, 2020. https://www.who.int/cancer/palliative/definition/en/
  • 172 Holloway RG, Arnold RM, Creutzfeldt CJ. et al; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45 (06) 1887-1916
  • 173 Creutzfeldt CJ, Kluger B, Kelly AG. et al. Neuropalliative care: Priorities to move the field forward. Neurology 2018; 91 (05) 217-226 . Doi: 10.1212/WNL.000000000000 59 16
  • 174 Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol 2021; 268 (09) 3059-3071 . Doi: 10.1007/s00415-021-10406-y
  • 175 Smith EE, Mountain A, Hill MD. et al; Canadian Stroke Best Practices Advisory Council. Canadian Stroke Best Practice Guidance During the COVID-19 Pandemic. Can J Neurol Sci 2020; 47 (04) 474-478 . Doi: 10.1017/cjn.2020.74
  • 176 Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 2009; 10 (12) 861-872 . Doi: 10.1038/nrn2735
  • 177 Cramer SC. Recovery After Stroke. Continuum (Minneap Minn) 2020; 26 (02) 415-434 . Doi: 10.1212/CON.0000000000000838
  • 178 Knepley KD, Mao JZ, Wieczorek P, Okoye FO, Jain AP, Harel NY. Impact of Telerehabilitation for Stroke-Related Deficits. Telemed J E Health 2021; 27 (03) 239-246 . Doi: 10.1089/tmj.2020.0019
  • 179 Cramer SC, Dodakian L, Le V. et al; National Institutes of Health StrokeNet Telerehab Investigators. Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. JAMA Neurol 2019; 76 (09) 1079-1087 . Doi: 10.1001/jamaneurol.2019.1604
  • 180 Ang KK, Guan C, Chua KS. et al. A clinical evaluation on the spatial patterns of non-invasive motor imagery-based brain-computer interface in stroke. Annu Int Conf IEEE Eng Med Biol Soc 2008; 2008: 4174-4177 . Doi: 10.1109/IEMBS.2008.4650129
  • 181 Capela NA, Lemaire ED, Baddour N, Rudolf M, Goljar N, Burger H. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. J Neuroeng Rehabil 2016; 13: 5 . Doi: 10.1186/s12984-016-0114-0
  • 182 Grawemeyer B, Cox R, Lum C. AUDIX: a knowledge-based system for speech-therapeutic auditory discrimination exercises. Stud Health Technol Inform 2000; 77: 568-572
  • 183 Colomer C, Llorens R, Noé E, Alcañiz M. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil 2016; 13 (01) 45 . Doi: 10.1186/s12984-016-0153-6 Erratum in: J Neuroeng Rehabil. 2017;14 (1):12
  • 184 Sung HC, Chang SM, Chin MY, Lee WL. Robot-assisted therapy for improving social interactions and activity participation among institutionalized older adults: a pilot study. Asia-Pac Psychiatry 2015; 7 (01) 1-6 . Doi: 10.1111/appy.12131
  • 185 Cacho RO, Conforto AB, Guarda SNF, Pinto EB, Moro CHC, Bazan R. et al. Access to rehabilitation after stroke in Brazil (AReA Study). An Observational multicenter protocol. Arq Neuropsiquiatr 2021 sep 79, Suppl 1