CC BY 4.0 · Organic Materials 2022; 4(04): 170-177
DOI: 10.1055/s-0042-1757972
Supramolecular Chemistry
Original Article

Pyrene-Based Macrocrosslinkers with Supramolecular Mechanochromism for Elastic Deformation Sensing in Hydrogel Networks

a   DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
b   Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
,
a   DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
› Author Affiliations


Abstract

Excimer-containing polymers with supramolecular mechanochromism are an attractive and well-investigated class of mechanoresponsive materials. However, only recently steps toward mechanophore-like mechanochromic systems that are anchored within the parent polymer structure and that show defined optical transitions on the molecular scale have been reported. However, the multi-step syntheses of these constructs are tedious. Here we report the development of a series of pyrene-based macrocrosslinkers that display supramolecular mechanochromism and are readily synthesized from mostly commercial reagents. We incorporate the water-soluble macrocrosslinkers in hydrogel networks and demonstrate their reversible mechanochromic behavior in the elastic deformation regime.

Primary Data



Publication History

Received: 12 August 2022

Accepted after revision: 16 September 2022

Article published online:
26 October 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Förster T, Kasper KZ. Elektrochem. Ber. Bunsenges. Phys. Chem. 1955; 59: 976
  • 2 Birks JB, Dyson DJ, Munro IH, Flowers BH. Proc. R. Soc. London, Ser. A 1963; 275: 575
  • 3 de Halleux V, Mamdouh W, De Feyter S, De Schryver F, Levin J, Geerts YH. J. Photochem. Photobiol., A 2006; 178: 251
  • 4 Förster T. Angew. Chem. Int. Ed. Engl. 1969; 8: 333
  • 5 Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260
  • 6 Pietsch C, Vollrath A, Hoogenboom R, Schubert US. Sensors 2010; 10: 7979
  • 7 Dembska A, Juskowiak B. Spectrochim. Acta, Part A 2015; 150: 928
  • 8 Claucherty S, Sakaue H. Sens. Actuator, A 2021; 317: 112359
  • 9 Kovalev IS, Taniya OS, Slovesnova NV, Kim GA, Santra S, Zyryanov GV, Kopchuk DS, Majee A, Charushin VN, Chupakhin ON. Chem. Asian J. 2016; 11: 775
  • 10 Bains G, Patel AB, Narayanaswami V. Molecules 2011; 16: 7909
  • 11 Somerharju PChem. Phys. Lipids 2002; 116: 57
  • 12 Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Molecules 2017; 22: 2108
  • 13 Sagara Y, Yamane S, Mitani M, Weder C, Kato T. Adv. Mater. 2016; 28: 1073
  • 14 Calvino C, Neumann L, Weder C, Schrettl S. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 640
  • 15 Traeger H, Kiebala DJ, Weder C, Schrettl S. Macromol. Rapid Commun. 2021; 42: 2000573
  • 16 Löwe C, Weder C. Adv. Mater. 2002; 14: 1625
  • 17 OʼNeill RT, Boulatov R. Nat. Rev. Chem. 2021; 5: 148
  • 18 Chen Y, Mellot G, Luijk Dvan, Creton C, Sijbesma RP. Chem. Soc. Rev. 2021; 50: 4100
  • 19 Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc. 2018; 140: 1584
  • 20 Muramatsu T, Sagara Y, Traeger H, Tamaoki N, Weder C. ACS Appl. Mater. Interfaces 2019; 11: 24571
  • 21 Sagara Y, Karman M, Seki A, Pannipara M, Tamaoki N, Weder C. ACS Cent. Sci. 2019; 5: 874
  • 22 Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, Sagara Y. J. Am. Chem. Soc. 2021; 143: 9884
  • 23 Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. J. Am. Chem. Soc. 2021; 143: 5519
  • 24 van de Laar T, Schuurman H, van der Scheer P, Maarten van Doorn J, van der Gucht J, Sprakel J. Chem 2018; 4: 269
  • 25 Raisch M, Maftuhin W, Walter M, Sommer M. Nat. Commun. 2021; 12: 4243
  • 26 Raisch M, Reiter G, Sommer M. ACS Macro Lett. 2022; 11: 760
  • 27 Hu H, Cheng X, Ma Z, Sijbesma RP, Ma Z. J. Am. Chem. Soc. 2022; 144: 9971
  • 28 Traeger H, Sagara Y, Kiebala DJ, Schrettl S, Weder C. Angew. Chem. Int. Ed. 2021; 60: 16191
  • 29 Traeger H, Sagara Y, Berrocal JA, Schrettl S, Weder C. Polym. Chem. 2022; 13: 2860
  • 30 Liese S, Gensler M, Krysiak S, Schwarzl R, Achazi A, Paulus B, Hugel T, Rabe JP, Netz RR. ACS Nano 2017; 11: 702
  • 31 Lutolf MP, Hubbell JA. Biomacromolecules 2003; 4: 713
  • 32 Rehmann MS, Skeens KM, Kharkar PM, Ford EM, Maverakis E, Lee KH, Kloxin AM. Biomacromolecules 2017; 18: 3131
  • 33 Wang J, Zhang F, Tsang WP, Wan C, Wu C. Biomaterials 2017; 120: 11
  • 34 Licht C, Rose JC, Anarkoli AO, Blondel D, Roccio M, Haraszti T, Gehlen DB, Hubbell JA, Lutolf MP, De Laporte L. Biomacromolecules 2019; 20: 4075
  • 35 Grad EM, Tunn I, Voerman D, de Léon AS, Hammink R, Blank KG. Front. Chem. 2020; 8: 536
  • 36 He S, Stratigaki M, Centeno SP, Dreuw A, Göstl R. Chem. Eur. J. 2021; 27: 15889
  • 37 Rossi NAA, Duplock EJ, Meegan J, Roberts DRT, Murphy JJ, Patel M, Holder SJ. J. Mater. Chem. 2009; 19: 7674
  • 38 Roberts DRT, Patel M, Murphy JJ, Holder SJ. Sens. Actuators, B 2012; 162: 43
  • 39 Cellini F, Block L, Li J, Khapli S, Peterson SD, Porfiri M. Sens. Actuators, B 2016; 234: 510
  • 40 Rasch D, Göstl R. ACS Polym. Au 2021; 1: 59
  • 41 Roy D, Brooks WLA, Sumerlin BS. Chem. Soc. Rev. 2013; 42: 7214
  • 42 Schild HG. Prog. Polym. Sci. 1992; 17: 163
  • 43 Chua GBH, Roth PJ, Duong HTT, Davis TP, Lowe AB. Macromolecules 2012; 45: 1362
  • 44 Winnik FM. Chem. Rev. 1993; 93: 587
  • 45 Iwamura M, Ishikawa T, Koyama Y, Sakuma K, Iwamura H. Tetrahedron Lett. 1987; 28: 679
  • 46 Birks JB. Nature 1967; 214: 1187