Subscribe to RSS
DOI: 10.1055/s-0042-1757981
New Avenues for Organic Redox Materials as Sustainable Lithium-ion Battery Cathodes
Abstract
As the demand for electrification of means of transportation and storage of electrical energy for later use is skyrocketing, rechargeable Li-ion batteries (LIBs) are at the heart of this revolution. Acknowledging the carbon footprints, environmental concerns and cost of the commercial cathode materials, this is the high time to advocate sustainable alternatives. This review aims at establishing the potential of organic redox-active molecules as a burgeoning class of sustainable solid cathode materials for LIBs. The materials are classified according to their structural features (molecules, metallo-organic complexes, and organic/metal–organic frameworks) and electrochemical performance to lay emphasis on practical applications and bottlenecks in commercialization. However, these materials are still in early stages of development, and new frontiers have been explored in the last five years.
Publication History
Received: 24 August 2022
Accepted after revision: 01 December 2022
Article published online:
25 January 2023
© 2023. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 MIT Energy Initiative. The Future of Energy Storage. Massachusetts Institute of Technology; Cambridge: 2022
- 2a Goodenough JB, Park K-S. J. Am. Chem. Soc. 2013; 135: 1167
- 2b Grey CP, Hall DS. Nat. Commun. 2020; 6279: 1
- 2c Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Nat. Energy 2021; 6: 123
- 3a Vishwanathan V, Epstein AH, Chiang Y-M, Tekeuchi E, Bradley M, Langford J, Winter M. Nature 2022; 601: 519
- 3b Fichtner M. Batteries Supercaps 2021; 4: 1
- 3c Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Materials 2020; 13: 1884
- 4a Armand M, Tarascon JM. Nature 2008; 451: 652
- 4b Kwade A, Haselreider W, Leithoff R, Modlinger A, Dietrich F, Droeder K. Nat. Energy 2018; 3: 290
- 4c Masias A, Marcicki J, Paxton WA. ACS Energy Lett. 2021; 6: 621
- 4d U.S. Environmental Protection Agency. The Official U.S. Government Source for Fuel Economy Information. Accessed December 12, 2022 at: www.fueleconomy.gov
- 5a Baars J, Domenech T, Bleischwitz R, Melin HE, Heidrich O. Nat. Sustainability 2021; 4: 71
- 5b Poizot P, Dolhem F. Energy Environ. Sci. 2011; 4: 2003
- 5c Zhao L, Lakraychi AE, Chen Z, Liang Y, Yao Y. ACS Energy Lett. 2021; 6: 3287
- 5d Friebe C, Lex-Balducci A, Schubert US. ChemSusChem 2019; 12: 4093
- 5e Poizot P, Dolhem F. Energy Environ. Sci. 2011; 4: 2003
- 6a Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Chem. Rev. 2020; 120: 6490
- 6b Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. J. Power Sources 2021; 482: 228814
- 6c Lakraychi AE, Dolhem F, Vlad A, Becuew M. Adv. Energy Mater. 2021; 11: 210156
- 6d Lakraychi AE, Vlad A. Chim. Nouv. 2018; 127: 1
- 7a Oubaha H, Gohy J-F, Melinte S. ChemPlusChem 2019; 84: 1
- 7b Haupler B, Wild A, Schubert US. Adv. Energy Mater. 2015; 5: 1402034
- 8a Dolphijn G, Gauthy F, Vlad A, Gohy J-F. Polymers 2021; 13: 986
- 8b Sieuw L, Ernould B, Gohy J-F, Vlad A. Sci. Rep. 2017; 7: 4847
- 8c Dolphijn G, Isikli S, Gauthy F, Vlad A, Gohy J-F. Electrochim. Acta 2017; 255: 442
- 8d Cheng L, Du X, Jiang Y, Vlad A. Nano Energy 2017; 41: 193
- 8e Sandu G, Ernould B, Rolland J, Cheminet N, Brassinne J, Das PR, Filinchuk Y, Cheng L, Komsiyska L, Dubois P, Melinte S, Gohy J-F, Lazzaroni R, Vlad A. ACS Appl. Mater. Interfaces 2017; 9,: 34856
- 8f Vlad A, Balducci A. Nat. Mater. 2017; 16: 161
- 8g Vlad A, Singh N, Melinte S, Gohy J-F, Ajayan PM. Sci. Rep. 2016; 6: 22194
- 8h Vlad A, Arnould K, Ernould B, Sieuw L, Rolland J, Gohy J-F. J. Mater. Chem. 2015; 3: 11189
- 8i Ernould B, Devos M, Bourgeois J-P, Rolland J, Vlad A, Gohy J-F. J. Mater. Chem. 2015; 3: 8832
- 8j Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy J-F. Sci. Rep. 2014; 4: 4315
- 9a Liang Y, Yao Y. Joule 2018; 2: 1690
- 9b Lee S, Kwon G, Ku K, Yoon K, Jung S-K, Lim H-D, Kang K. Adv. Mater. 2018; 30: 1704682
- 9c Kim DJ, Yoo D-J, Otley MT, Prokofjevs A, Pezzato C, Owczarek M, Lee SJ, Choi JW, Stoddart JF. Nat. Energy 2019; 4: 51
- 9d Lee M, Hong J, Lopez J, Sun Y, Feng D, Lim K, Chueh WC, Toney MF, Cui Y, Bao Z. Nat. Energy 2017; 2: 861
- 9e Wang J, Liu X, Jia H, Apostol P, Guo X, Lucaccioni F, Zhang X, Zhu Q, Morari C, Gohy J-F, Vlad A. ACS Energy Lett. 2022; 7: 668
- 9f Wang J, Vlad A. Nat. Energy 2020; 5: 945
- 10a Dühnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T. Small Methods 2020; 4: 2000039
- 10b Janoschka T, Hager MD, Schubert US. Adv. Mater. 2012; 24: 6397
- 10c Lakraychi AE, Dolhem F, Vlad A, Becuwe M. Adv. Energy Mater. 2021; 11: 2101562
- 10d Shadike Z, Tan S, Wang Q-C, Lin R, Hu E, Qu D, Yang X-Q. Mater. Horiz. 2021; 8: 471
- 10e Häupler B, Burges R, Friebe C, Janoschka T, Schmidt D, Wild A, Schubert US. Macromol. Rapid Commun. 2014; 35,: 1367
- 10f Lakraychi AE, Deunf E, Fahsi K, Jimenez P, Bonnet J-P, Djedaini-Pilard F, Becuwe M, Poizot P, Dolhem F. J. Mater. Chem. A 2018; 6: 19182
- 10g Chen L, Liu S, Zhao L, Zhao Y. Electrochim. Acta 2017; 258: 677
- 10h Macdiarmid AG, Yang LS, Huang WS, Humphrey BD. Synth. Met. 1987; 18: 393
- 10i Sukaushi K, Nickerl G, Wisser FM, Nishio-Hamane D, Hosono E, Zhou H, Kaskel S, Eckert J. Angew. Chem. Int. Ed. 2012; 51: 7850
- 10j Yokoji T, Matsubara H, Satoh M. J. Mater. Chem. A 2014; 2: 19347
- 10k Gottis S, Barres A-L, Dolhem F, Poizot P. ACS Appl. Mater. Interfaces 2014; 6: 10870
- 10l Chen H, Armand M, Courty M, Jiang M, Dolhem F, Tarascon J-M, Poizot P. J. Am. Chem. Soc. 2009; 131: 8984
- 10m Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon J-M. Nat. Mater. 2009; 8: 120
- 10n Renault S, Oltean VA, Araujo CM, Grigoriev A, Edstrom K, Brandell D. Chem. Mater. 2016; 28: 1920
- 10o Wan W, Lee H, Yu X, Wang C, Nam K-W, Yang X-Q, Zhou H. RSC Adv. 2014; 4: 19878
- 10p Shi Y, Tang H, Jiang S, Kayser LV, Li M, Liu F, Ji F, Lipomi DJ, Ong SP, Chen Z. Chem. Mater. 2018; 30: 3508
- 10q Lakraychi AE, Dolhem F, Vlad A, Becuwe M. Adv. Energy Mater. 2021; 11: 2101562
- 10r Lakraychi AE, Dolhem F, Djedaini-Pilard F, Thiam A, Becuwe M. J. Power Sources 2017; 359: 198
- 11 Renault S, Gottis S, Barres A-L, Courty M, Chauvet O, Dolhem F, Poizot P. Energy Environ. Sci. 2013; 6: 2124
- 12 Sieuw L, Jouhara A, Quarez E, Auger C, Gohy J-F, Poizot P, Vlad A. Chem. Sci. 2019; 10: 418
- 13 Lakraychi AE, Fahsi K, Aymard L, Poizot P, Dolhem F, Bonnet J-P. Electrochem. Commun. 2017; 76: 47
- 14 Jouhara A, Dupre N, Gaillot A-C, Guyomard D, Dolhem F, Poizot P. Nat. Commun. 2018; 9: 4401
- 15 Sieuw L, Lakraychi AE, Rambabu D, Robeyns K, Jouhara A, Borodi G, Morari C, Poizot P, Vlad A. Chem. Mater. 2020; 32: 9996
- 16 Wang J, Lakraychi AE, Liu X, Sieuw L, Morari C, Poizot P, Vlad A. Nat. Mater. 2021; 20: 665
- 17a Wang J, Liu X, Jia H, Apostol P, Guo X, Lucaccioni F, Zhang X, Zhu Q, Morai C, Gohy J-F, Vlad A. ACS Energy Lett. 2022; 7: 668
- 17b Wang J, Guo X, Apostol P, Liu X, Robeyns K, Gence L, Morari C, Gohy J-F, Vlad A. Energy Environ. Sci. 2022; 15: 3923
- 18 Liu X, Ye Z. Adv. Energy Mater. 2020; 11: 2003281
- 19 Wang J, Apostol P, Rambabu D, Liu X, Guo X, Robeyns K, Lakraychi AE, Morari C, Gohy J-F, Gupta D, Vlad A. Research Square 2022; preprint; (Nat. Commun., manuscript under consideration)
- 20 Pierpont CG. Coord. Chem. Rev. 2001; 216: 99
- 21 Kaim W. Eur. J. Inorg. Chem. 2012; 2012: 343
- 22 Gao P, Chen Z, Zhao-Karger Z, Mueller JE, Jung C, Klyatskaya S, Diemant T, Fuhr O, Jacob T, Behm RJ, Ruben M, Fichtner M. Angew. Chem. Int. Ed. 2017; 56: 10341
- 23 Zheng Q, Niu Z, Ye J, Zhang S, Zhang L, Li L, Zhao Y, Zhang X. Adv. Funct. Mater. 2017; 27: 1604299
- 24 Lakraychi AE, Kreijger SD, Gupta D, Elias B, Vlad A. ChemSusChem 2020; 13: 2225
- 25 Gupta D, Lakraychi AE, Boruah BD, Kreijger SD, Troian-Gautier L, Elias B, Volder MD, Vlad A. Chem. Eur. J. 2022; 28: e202201220
- 26 Yaghi OM, OʼKeefe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Nature 2003; 423: 705
- 27 Furukawa H, Cordova KE, OʼKeefe M, Yaghi OM. Science 2013; 341: 1230444
- 28a Zhang X, Dong P, Song M-K. Batteries Supercaps 2019; 2: 591
- 28b Li S-L, Xu Q. Energy Environ. Sci. 2013; 6: 1656
- 28c Wang Z, Tao H, Yue Y. ChemElectroChem 2019; 6: 5358
- 29a Reddy RCK, Lin X, Zeb A, Su C-Y. Electrochem. Energy Rev. 2022; 5: 312
- 29b Zhang L, Liu H, Shi W, Cheng P. Coord. Chem. Rev. 2019; 1: 293
- 30 Ferey G, Millange F, Morcrette M, Serre C, Doublet M-L, Greneche J-M, Tarascon J-M. Angew. Chem. Int. Ed. 2007; 46: 3259
- 31 Xie LS, Skoruppskii G, Dincã M. Chem. Rev. 2020; 120: 8536
- 32a Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. Angew. Chem. Int. Ed. 2021; 60: 5612
- 32b Zhang C, Fan K, Chen Y, Wu Y, Wang C. ACS Appl. Electron. Mater. 2021; 3: 1947
- 32c Sakaushi K, Nishihara H. Acc. Chem. Res. 2021; 54: 3003
- 33 Wada K, Sakaushi K, Sasaki S, Nishihara H. Angew. Chem. Int. Ed. 2018; 57: 8886
- 34 Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X-Q, Hu E, Cao Y, Sun J, Xu Y, Chen L. Angew. Chem. Int. Ed. 2020; 59: 5273
- 35 Ziebel ME, Gaggioli CA, Turkiewicz AB, Ryu W, Gagliardi L, Long JR. J. Am. Chem. Soc. 2020; 142: 2653
- 36 Rambabu D, Lakraychi AE, Wang J, Sieuw L, Gupta D, Apostol P, Chanteux G, Goossens T, Robeyns K, Vlad A. J. Am. Chem. Soc. 2021; 143: 11641