CC BY 4.0 · Indian J Med Paediatr Oncol 2022; 43(06): 451-457
DOI: 10.1055/s-0042-1758538
Review Article

Cutting-Edge Developments in Oncology Research

Neelabh Datta
1   Department of Biochemistry, Asutosh College, Affiliated to University of Calcutta), Kolkata, West Bengal, India
› Institutsangaben

Abstract

The field of oncology research has made many successful advances, and new discoveries have started making headlines. As an example, the identification of immune checkpoint inhibition mechanisms in carcinogenic cells led to the development of immunoassays, which have helped many cancer convalescents recover. This article covers the most advanced cutting-edge areas of cancer research: exosomes, microbiomes, immunotherapy, nanocarriers, and organoids. Research on exosomes advances cancer detection and treatment modalities, as well as further understanding of mechanisms that regulate carcinogen cell division, proliferation, invasion, and metastasis. Microbiome consents the researchers to understand the disease cancer. Immunotherapy is the third method in the treatment of cancer. Organoid biology will be further expanded with the aim of translating research into customized therapeutic therapies. Nanocarriers enable cancer specific drug delivery by inherent unreceptive targeting phenomena and implemented active targeting strategies. These areas of research may also bring about the advent of the latest cancer treatments in the future. Malignant infections are one of the leading grounds for demise in the society. Patients are treated with surgery, radiation, and chemotherapy. In chemotherapy, the malignant cells are destroyed and the tumor burden is reduced. However, in most cases, resistance to chemotherapy develops. Therefore, there is a constant need for new additional treatment modalities and chemotherapeutic complex rules. Due to the rapid development in cancer research, I can only mention a few goals and treatment options that I have chosen; However, this review specializes in new and admirable significant strategies and compounds.



Publikationsverlauf

Artikel online veröffentlicht:
28. November 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Ando K, Hu Q, Kasagi Y, Oki E, Mori M. Recent developments in cancer research: expectations for a new remedy. Ann Gastroenterol Surg 2021; 5 (04) 419-426
  • 2 Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10 (08) 472-484
  • 3 Ishihara S, Otani K, Yasuda K. et al. Recent advances in robotic surgery for rectal cancer. Int J Clin Oncol 2015; 20 (04) 633-640
  • 4 Seto Y, Mori K, Aikou S. Robotic surgery for esophageal cancer: merits and demerits. Ann Gastroenterol Surg 2017; 1 (03) 193-198
  • 5 Terashima M, Tokunaga M, Tanizawa Y. et al. Robotic surgery for gastric cancer. Gastric Cancer 2015; 18 (03) 449-457
  • 6 Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007; 19 (07) 813-824
  • 7 Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126 (04) 1208-1215
  • 8 Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28: 3-13
  • 9 Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2013; 2 (01) 20424
  • 10 Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer 2018; 105 (7-8): 643-651
  • 11 Lu Y, Chen L, Li L, Cao Y. Exosomes derived from brain metastatic breast cancer cells destroy the blood-brain barrier by carrying lncRNA GS1-600G8.5. BioMed Res Int 2020; 2020: 7461727
  • 12 Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18 (01) 75
  • 13 Ono M, Kosaka N, Tominaga N. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7 (332) ra63
  • 14 Li W, Li C, Zhou T. et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer 2017; 16 (01) 145
  • 15 Bu H, He D, He X, Wang K. Exosomes: Isolation, analysis, and applications in cancer detection and therapy. ChemBioChem 2019; 20 (04) 451-461
  • 16 Yoshioka Y, Kosaka N, Konishi Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 2014; 5: 3591
  • 17 D'Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015; 451 (Pt A): 97-102
  • 18 Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol 2017; 15 (01) 127
  • 19 Ley RE, Gewirtz AT. Corralling colonic flagellated microbiota. N Engl J Med 2016; 375 (01) 85-87
  • 20 Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol 2015; 21 (03) 803-814
  • 21 Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012; 486 (7402): 215-221
  • 22 Chen J, Ryu E, Hathcock M. et al. Impact of demographics on human gut microbial diversity in a US Midwest population. PeerJ 2016; 4: e1514
  • 23 Gagnière J, Raisch J, Veziant J. et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22 (02) 501-518
  • 24 Yachida S, Mizutani S, Shiroma H. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019; 25 (06) 968-976
  • 25 Topalian SL, Sznol M, McDermott DF. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014; 32 (10) 1020-1030
  • 26 Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 2020; 13 (01) 12-21
  • 27 Okai S, Usui F, Yokota S. et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol 2016; 1 (09) 16103
  • 28 Ahn J, Sinha R, Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013; 105 (24) 1907-1911
  • 29 Mima K, Nakagawa S, Sawayama H. et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett 2017; 402: 9-15
  • 30 McCune JS. Rapid advances in immunotherapy to treat cancer. Clin Pharmacol Ther 2018; 103 (04) 540-544
  • 31 June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359 (6382): 1361-1365
  • 32 Kochenderfer JN, Somerville RPT, Lu T. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 2017; 35 (16) 1803-1813
  • 33 Larkin J, Chiarion-Sileni V, Gonzalez R. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019; 381 (16) 1535-1546
  • 34 Hellmann MD, Paz-Ares L, Bernabe Caro R. et al. Nivolumab plus Ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019; 381 (21) 2020-2031
  • 35 Kato K, Cho BC, Takahashi M. et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019; 20 (11) 1506-1517
  • 36 Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol 2006; 6 (06) 457-464
  • 37 Grupp SA, Kalos M, Barrett D. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368 (16) 1509-1518
  • 38 Overman MJ, Lonardi S, Wong KYM. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018; 36 (08) 773-779
  • 39 Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345 (6194): 1247125
  • 40 Boj SF, Hwang CI, Baker LA. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015; 160 (1-2): 324-338
  • 41 van de Wetering M, Francies HE, Francis JM. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161 (04) 933-945
  • 42 Kasagi Y, Chandramouleeswaran PM, Whelan KA. et al. The esophageal organoid system reveals functional interplay between notch and cytokines in reactive epithelial changes. Cell Mol Gastroenterol Hepatol 2018; 5 (03) 333-352
  • 43 Dinndorf PA, Gootenberg J, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 2007; 12 (08) 991-998
  • 44 Fujii M, Shimokawa M, Date S. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 2016; 18 (06) 827-838
  • 45 Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148 (02) 135-146
  • 46 Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207
  • 47 Arias JL. Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 2011; 11 (01) 1-17
  • 48 Yuan F, Dellian M, Fukumura D. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55 (17) 3752-3756
  • 49 Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307 (01) 93-102
  • 50 Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14 (05) 1310-1316
  • 51 Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005; 293 (1-2): 261-270
  • 52 Gratton SEA, Ropp PA, Pohlhaus PD. et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008; 105 (33) 11613-11618
  • 53 Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79
  • 54 Calvo-González C, Reche-Frutos J, Donate-López J. et al. Combined Pegaptanib sodium (Macugen) and photodynamic therapy in predominantly classic juxtafoveal choroidal neovascularisation in age related macular degeneration. Br J Ophthalmol 2008; 92 (01) 74-75
  • 55 Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001; 74 (1-3): 47-61
  • 56 Jain RK. Barriers to drug delivery in solid tumors. Sci Am 1994; 271 (01) 58-65
  • 57 Talelli M, Oliveira S, Rijcken CJ. et al. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy. Biomaterials 2013; 34 (04) 1255-1260
  • 58 Kirpotin DB, Drummond DC, Shao Y. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66 (13) 6732-6740
  • 59 Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161 (02) 175-187
  • 60 Johannsen M, Spitaleri G, Curigliano G. et al. The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 2010; 46 (16) 2926-2935
  • 61 Kimball KJ, Preuss MA, Barnes MN. et al. A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases. Clin Cancer Res 2010; 16 (21) 5277-5287
  • 62 Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3 (01) 16-20
  • 63 Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6 (09) 688-701
  • 64 Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2 (05) 347-360
  • 65 Bildstein L, Dubernet C, Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev 2011; 63 (1-2): 3-23
  • 66 Ho DH, Brown NS, Yen A. et al. Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab Dispos 1986; 14 (03) 349-352
  • 67 Fuertges F, Abuchowski A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J Control Release 1990; 11: 139-148
  • 68 Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8 (06) 2101-2141
  • 69 Canal F, Sanchis J, Vicent MJ. Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol 2011; 22 (06) 894-900
  • 70 Rademaker-Lakhai JM, Terret C, Howell SB. et al. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res 2004; 10 (10) 3386-3395
  • 71 Dan Eramian “Cell Therapeutics, Inc.: Paclitaxel Poliglumex (OPAXIO®) Combined with Temozolomide and Radiotherapy Demonstrates High Response Rates with Encouraging Progression Free Survival in Malignant Brain Cancer” Nov 22, 2010; https://www.biospace.com/article/releases/cell-therapeutics-inc-paclitaxel-poliglumex-opaxio-combined-with-temozolomide-and-radiotherapy-demonstrates-high-response-rates-with-encouraging/
  • 72 Fracasso PM, Picus J, Wildi JD. et al. Phase 1 and pharmacokinetic study of weekly docosahexaenoic acid-paclitaxel, Taxoprexin, in resistant solid tumor malignancies. Cancer Chemother Pharmacol 2009; 63 (03) 451-458
  • 73 Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M. NanoImpactNet Consortium. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 2013; 8 (03) 449-467