Subscribe to RSS

DOI: 10.1055/s-0042-1758757
Do handgrip strength and dexterity predict respiratory function in neuromuscular disease?
A força de preensão manual e a destreza predizem a função respiratória em doenças neuromusculares?
Abstract
Background Neuromuscular diseases are acquired or inherited diseases that affect the function of the muscles in our body, including respiratory muscles.
Objective We aimed to discover more cost-effective and practical tools to predict respiratory function status, which causes serious problems with patients with neuromuscular disease.
Methods The Vignos and Brooke Upper Extremity Functional Scales were used to evaluate functional status for patient recruitment. The handgrip strength and dexterity of patients were measured using a dynamometer and nine-hole peg test. Respiratory function parameters: forced vital capacity, forced expiratory volume in one second, and peak expiratory flow were evaluated using spirometry.
Results The mean age of the 30 patients was 11.5 ± 3.79 years old. Significant relationships were found between nine-hole-peg-test scores and respiratory function parameters on both sides. Significant correlations were found between both handgrip strength and respiratory function parameters (p < 0.05). In the linear regression analysis, it was seen that the forced expiratory volume in 1 second, and peak expiratory flow values could be explained in different percentages (p < 0.05).
Conclusions Handgrip strength and dexterity measurements can be used as indicators for estimating respiratory function parameters in terms of cost and accessibility, although it is known that they will not replace respiratory function tests.
Resumo
Antecedentes As doenças neuromusculares são doenças adquiridas ou hereditárias que afetam a função dos músculos do nosso corpo, incluindo os músculos respiratórios.
Objetivo Nosso objetivo foi descobrir ferramentas mais práticas e econômicas para prever o estado da função respiratória, que causa sérios problemas em pacientes com doença neuromuscular.
Métodos As Escalas Funcionais da Extremidade Superior de Vignos e Brooke foram utilizadas para avaliar o estado funcional para recrutamento de pacientes. A força de preensão manual e a destreza dos pacientes foram medidas por meio de um dinamômetro e do teste de nove buracos. Os parâmetros da função respiratória: capacidade vital forçada, volume expiratório forçado no primeiro segundo e pico de fluxo expiratório foram avaliados por meio da espirometria.
Resultados A média de idade dos 30 pacientes foi de 11,5 ± 3,79 anos. Relações significativas foram encontradas entre as pontuações do teste de nove buracos e os parâmetros da função respiratória em ambos os lados. Correlações significativas foram encontradas entre a força de preensão manual e os parâmetros da função respiratória (p < 0,05). Na análise de regressão linear, observou-se que o volume expiratório forçado no primeiro segundo e os valores de pico de fluxo expiratório puderam ser explicados em diferentes percentuais (p < 0,05).
Conclusões As medidas de força de preensão manual e destreza podem ser utilizadas como indicadores para estimar parâmetros da função respiratória em termos de custo e acessibilidade, embora se saiba que não substituirão os testes de função respiratória.
Palavras-chave
Doenças Neuromusculares - Destreza Motora - Testes de Função Respiratória - Força da MãoAuthors' Contributions
ES: project design, data collection, data analysis, paper writing; AYO, HNG: project design, data analysis, paper writing.
Publication History
Received: 06 December 2021
Accepted: 12 February 2022
Article published online:
28 December 2022
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Kennedy JD, Martin AJ. Chronic respiratory failure and neuromuscular disease. Pediatr Clin North Am 2009; 56 (01) 261-273, xii
- 2 Perrin C, Unterborn JN, Ambrosio CD, Hill NS. Pulmonary complications of chronic neuromuscular diseases and their management. Muscle Nerve 2004; 29 (01) 5-27
- 3 Allen J. Respiratory function in children with neuromuscular disease. Monaldi Archives for Chest Disease/Arch Monaldi Mal Torace 1996; 51 (03) 230-235 PubMed
- 4 Seferian AM, Moraux A, Annoussamy M. et al. Upper limb strength and function changes during a one-year follow-up in non-ambulant patients with Duchenne Muscular Dystrophy: an observational multicenter trial. PLoS One 2015; 10 (02) e0113999
- 5 Han CH, Chung JH. Association between hand grip strength and spirometric parameters: Korean National health and Nutrition Examination Survey (KNHANES). J Thorac Dis 2018; 10 (11) 6002-6009
- 6 Yozbatiran N, Baskurt F, Baskurt Z, Ozakbas S, Idiman E. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. J Neurol Sci 2006; 246 (1-2): 117-122
- 7 Niu H-X, Wang R-H, Xu H-L. et al. Nine-hole peg test and ten-meter walk test for evaluating functional loss in Chinese charcot-marie-tooth disease. Chin Med J (Engl) 2017; 130 (15) 1773-1778
- 8 Panitch HB. Respiratory implications of pediatric neuromuscular disease. Respir Care 2017; 62 (06) 826-848
- 9 Chyou P-H, White LR, Yano K. et al. Pulmonary function measures as predictors and correlates of cognitive functioning in later life. Am J Epidemiol 1996; 143 (08) 750-756
- 10 Richards M, Strachan D, Hardy R, Kuh D, Wadsworth M. Lung function and cognitive ability in a longitudinal birth cohort study. Psychosom Med 2005; 67 (04) 602-608
- 11 Lu Y-M, Lue Y-J. Strength and functional measurement for patients with muscular dystrophy. Muscular Dystrophy 2012; 32 (03) 671-688
- 12 Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve 1981; 4 (03) 186-197
- 13 Vignos Jr PJ, Archibald KC. Maintenance of ambulation in childhood muscular dystrophy. J Chronic Dis 1960; 12 (02) 273-290
- 14 Bellace JV, Healy D, Besser MP, Byron T, Hohman L. Validity of the Dexter Evaluation System's Jamar dynamometer attachment for assessment of hand grip strength in a normal population. J Hand Ther 2000; 13 (01) 46-51
- 15 Roberts HC, Denison HJ, Martin HJ. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 2011; 40 (04) 423-429
- 16 Wang Y-C, Bohannon RW, Kapellusch J, Garg A, Gershon RC. Dexterity as measured with the 9-Hole Peg Test (9-HPT) across the age span. J Hand Ther 2015; 28 (01) 53-59, quiz 60
- 17 Smith YA, Hong E, Presson C. Normative and validation studies of the Nine-hole Peg Test with children. Percept Mot Skills 2000; 90 (3 Pt 1): 823-843
- 18 Haidar SG, Kumar D, Bassi RS, Deshmukh SC. Average versus maximum grip strength: which is more consistent?. J Hand Surg Br 2004; 29 (01) 82-84
- 19 Graham BL, Steenbruggen I, Miller MR. et al. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am J Respir Crit Care Med 2019; 200 (08) e70-e88
- 20 Wanger J, Clausen JL, Coates A. et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26 (03) 511-522
- 21 Servais L, Canal A, De Coninck N. et al. Upper limb evaluation in non-ambulatory patients with neuromuscular disorders. Neuromuscul Disord 2010; 20 (9–10): 669
- 22 Connolly AM, Malkus EC, Mendell JR. et al; MDA DMD Clinical Research Network. Outcome reliability in non-ambulatory boys/men with Duchenne muscular dystrophy. Muscle Nerve 2015; 51 (04) 522-532
- 23 Mercuri E, McDonald C, Mayhew A. et al. International workshop on assessment of upper limb function in Duchenne Muscular Dystrophy: Rome, 15-16 February 2012. Neuromuscul Disord 2012; 22 (11) 1025-1028
- 24 Davoli GBQ, Cardoso J, Silva GC, Moreira RFC, Mattiello-Sverzut AC. Instruments to assess upper-limb function in children and adolescents with neuromuscular diseases: a systematic review. Dev Med Child Neurol 2021 Sep; 63 (09) 1030-1037
- 25 Hapke EJ, Meek JC, Jacobs J. Pulmonary function in progressive muscular dystrophy. Chest 1972; 61 (01) 41-47
- 26 Inkley SR, Oldenburg FC, Vignos Jr PJ. Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med 1974; 56 (03) 297-306
- 27 Brunherotti MA, Sobreira C, Rodrigues-Júnior AL, de Assis MR, Terra Filho J, Baddini Martinez JA. Correlations of Egen Klassifikation and Barthel Index scores with pulmonary function parameters in Duchenne muscular dystrophy. Heart Lung 2007; 36 (02) 132-139
- 28 Lee HN, Sawnani H, Horn PS, Rybalsky I, Relucio L, Wong BL. The Performance of the Upper Limb scores correlate with pulmonary function test measures and Egen Klassifikation scores in Duchenne muscular dystrophy. Neuromuscul Disord 2016; 26 (4-5): 264-271
- 29 Ricotti V, Selby V, Ridout D. et al. Respiratory and upper limb function as outcome measures in ambulant and non-ambulant subjects with Duchenne muscular dystrophy: A prospective multicentre study. Neuromuscul Disord 2019; 29 (04) 261-268
- 30 Jeong M, Kang HK, Song P. et al. Hand grip strength in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12: 2385-2390
- 31 Zhu R, Li W, Xia L. et al. Hand grip strength is associated with cardiopulmonary function in Chinese adults: Results from a cross-sectional study. J Exerc Sci Fit 2020; 18 (02) 57-61
- 32 Mutluay FK, Demir R, Ozyilmaz S, Caglar AT, Altintas A, Gurses HN. Breathing-enhanced upper extremity exercises for patients with multiple sclerosis. Clin Rehabil 2007; 21 (07) 595-602
- 33 Mgbemena NC, Aweto HA, Tella BA, Emeto TI, Malau-Aduli BS. Prediction of lung function using handgrip strength in healthy young adults. Physiol Rep 2019; 7 (01) e13960
- 34 Chen L, Liu X, Wang Q. et al. Better pulmonary function is associated with greater handgrip strength in a healthy Chinese Han population. BMC Pulm Med 2020; 20 (01) 1-8
- 35 Mattar FL, Sobreira C. Hand weakness in Duchenne muscular dystrophy and its relation to physical disability. Neuromuscul Disord 2008; 18 (03) 193-198
- 36 Häger-Ross C, Rösblad B. Norms for grip strength in children aged 4-16 years. Acta Paediatr 2002; 91 (06) 617-625
- 37 Kurillo G, Han JJ, Abresch RT, Nicorici A, Yan P, Bajcsy R. Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases. PLoS One 2012; 7 (09) e45341
- 38 Pangalila RF, van den Bos GA, Bartels B, Bergen M, Stam HJ, Roebroeck ME. Prevalence of fatigue, pain, and affective disorders in adults with duchenne muscular dystrophy and their associations with quality of life. Arch Phys Med Rehabil 2015; 96 (07) 1242-1247
- 39 Kaminska M, Noel F, Petrof BJ. Optimal method for assessment of respiratory muscle strength in neuromuscular disorders using sniff nasal inspiratory pressure (SNIP). Zissel G, editor. PLoS One. 2017; May; 12 (05) e0177723 https://doi.org/10.1371/journal.pone.0177723
- 40 Gotthelf M, Townsend D, Durfee W. A video game based hand grip system for measuring muscle force in children. J Neuroeng Rehabil 2021; 18 (01) 113