J Pediatr Genet
DOI: 10.1055/s-0042-1759782
Original Article

Novel FLNB Variants in Seven Argentinian Cases with Spondylocarpotarsal Synostosis Syndrome

1   Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
,
1   Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
,
2   Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
3   Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
4   Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
,
5   Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
,
5   Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
,
2   Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
3   Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
4   Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
,
V Fano
1   Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
› Author Affiliations

Abstract

Spondylocarpotarsal synostosis syndrome (SCT) is a very rare skeletal dysplasia characterized by vertebral, carpal, and tarsal fusion; growth retardation; and mild dysmorphic facial features. Variants in FLNB, MYH3, and RFLNA have been implicated in this dysplasia. We report the clinical and radiological follow-up of seven SCT pediatric cases associated with biallelic FLNB variants, from four Argentinian families. The seven cases share previously described facial characteristics: round facies, large eyes, and wide based nose; all of them had variable height deficit, in one case noted early in life. Other findings included clinodactyly, joint limitation without bone fusion, neurosensorial hearing loss, and ophthalmological compromise. All cases presented with spinal fusion with variable severity and location, carpal bones coalition, and also delay in carpal ossification. The heterozygous carrier parents had normal height values to −2.5 score standard deviation, without skeletal defects detected. Three different FLNB variants, one nonsense and two frameshift, were detected, all of which were predicted to result in a truncated protein or are degraded by nonsense mediated decay. All cases had at least one copy of the nonsense variant, c.1128C> G; p. (Tyr376*), suggesting the presence of a common ancestor.

Authors' Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ramos-Mejia Rosario, del Pino Mariana, Abbate Silvina, Obregon M.Gabriela, and Fano Virginia. Genetic studies were performed by Heath Karen E. and Aza-carmona Miriam. The first draft of the manuscript was written by Ramos-Mejia Rosario, and all authors commented on previous versions of the manuscript. All authors revised the manuscript critically and approved the final version. All of them agree to be accountable for all aspects of the work.


Data Availability

No datasets were created during the current study.




Publication History

Received: 20 May 2022

Accepted: 08 November 2022

Article published online:
15 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Langer Jr LO, Gorlin RJ, Donnai D, Hamel BC, Clericuzio C. Spondylocarpotarsal synostosis syndrome (with or without unilateral unsegmented bar). Am J Med Genet 1994; 51 (01) 1-8
  • 2 Mitter D, Krakow D, Farrington-Rock C, Meinecke P. Expanded clinical spectrum of spondylocarpotarsal synostosis syndrome and possible manifestation in a heterozygous father. Am J Med Genet A 2008; 146A (06) 779-783
  • 3 Salian S, Shukla A, Shah H. et al. Seven additional families with spondylocarpotarsal synostosis syndrome with novel biallelic deleterious variants in FLNB. Clin Genet 2018; 94 (01) 159-164
  • 4 Bröcker F, Bardenheuer W, Vieten L. et al. Assignment of human filamin gene FLNB to human chromosome band 3p14.3 and identification of YACs containing the complete FLNB transcribed region. Cytogenet Cell Genet 1999; 85 (3-4): 267-268
  • 5 Carapito R, Goldenberg A, Paul N. et al. Protein-altering MYH3 variants are associated with a spectrum of phenotypes extending to spondylocarpotarsal synostosis syndrome. Eur J Hum Genet 2016; 24 (12) 1746-1751
  • 6 Krakow D, Robertson SP, King LM. et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 2004; 36 (04) 405-410
  • 7 Shimizu H, Watanabe S, Kinoshita A. et al. Identification of a homozygous frameshift variant in RFLNA in a patient with a typical phenotype of spondylocarpotarsal synostosis syndrome. J Hum Genet 2019; 64 (05) 467-471
  • 8 Farrington-Rock C, Kirilova V, Dillard-Telm L. et al. Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum Mol Genet 2008; 17 (05) 631-641
  • 9 Sawyer GM, Clark AR, Robertson SP, Sutherland-Smith AJ. Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: insights from the crystal structures of filamin B actin binding domains. J Mol Biol 2009; 390 (05) 1030-1047
  • 10 Lu J, Lian G, Lenkinski R. et al. Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet 2007; 16 (14) 1661-1675
  • 11 Zheng L, Baek HJ, Karsenty G, Justice MJ. Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner. J Cell Biol 2007; 178 (01) 121-128
  • 12 Zhou X, Tian F, Sandzén J. et al. Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc Natl Acad Sci U S A 2007; 104 (10) 3919-3924
  • 13 Cameron-Christie SR, Wells CF, Simon M. et al. Recessive spondylocarpotarsal synostosis syndrome due to compound heterozygosity for variants in MYH3. Am J Hum Genet 2019; 105 (03) 669
  • 14 Scala M, Accogli A, De Grandis E. et al. A novel pathogenic MYH3 mutation in a child with Sheldon-Hall syndrome and vertebral fusions. Am J Med Genet A 2018; 176 (03) 663-667
  • 15 Takagi M, Shimomura S, Fukuzawa R, Narumi S, Nishimura G, Hasegawa T. A novel truncating mutation in MYH3 causes spondylocarpotarsal synostosis syndrome with basilar invagination. J Hum Genet 2018; 63 (12) 1277-1281
  • 16 Zieba J, Zhang W, Chong JX. et al. A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFβ signaling and cause autosomal dominant spondylocarpotarsal synostosis. Sci Rep 2017; 7: 41803
  • 17 Breitling M, Lemire EG, Rabin M. Spondylocarpotarsal synostosis syndrome: MRI evaluation of vertebral and disk malformation. Pediatr Radiol 2006; 36 (08) 866-869
  • 18 Coêlho KE, Ramos ES, Felix TM, Martelli L, de Pina-Neto JM, Niikawa N. Three new cases of spondylocarpotarsal synostosis syndrome: clinical and radiographic studies. Am J Med Genet 1998; 77 (01) 12-15
  • 19 Fukushima K, Parthasarathy P, Wade EM. et al. Intragenic deletions in FLNB are part of the mutational spectrum causing spondylocarpotarsal synostosis syndrome. Genes (Basel) 2021; 12 (04) 528
  • 20 Singh A, Kapoor S, Pradhan G. Urolithiasis in a child with spondylocarpotarsal synostosis syndrome: a co-incidence. J Clin Diagn Res 2013; 7 (09) 2031-2032
  • 21 Steiner CE, Torriani M, Norato DY, Marques-de-Faria AP. Spondylocarpotarsal synostosis with ocular findings. Am J Med Genet 2000; 91 (02) 131-134
  • 22 Al Kaissi A, Ghachem MB, Nassib N, Ben Chehida F, Kozlowski K. Spondylocarpotarsal synostosis syndrome (with a posterior midline unsegmented bar). Skeletal Radiol 2005; 34 (06) 364-366
  • 23 Mangaraj S, Choudhury AK, Singh M, Patro D, Baliarsinha AK. Spondylocarpotarsal synostosis syndrome. A rare case of short stature and congenital scoliosis. Clin Cases Miner Bone Metab 2017; 14 (02) 258-261
  • 24 Seaver LH, Boyd E. Spondylocarpotarsal synostosis syndrome and cervical instability. Am J Med Genet 2000; 91 (05) 340-344
  • 25 Brunetti-Pierri N, Esposito V, De Brasi D. et al. Spondylocarpotarsal synostosis: long-term follow-up of a case due to FLNB mutations. Am J Med Genet A 2008; 146A (09) 1230-1233
  • 26 Honeywell C, Langer L, Allanson J. Spondylocarpotarsal synostosis with epiphyseal dysplasia. Am J Med Genet 2002; 109 (04) 318-322
  • 27 Yang CF, Wang CH, Siong H'ng W. et al. Filamin B loss-of-function mutation in dimerization domain causes autosomal-recessive spondylocarpotarsal synostosis syndrome with rib anomalies. Hum Mutat 2017; 38 (05) 540-547
  • 28 del Pino M, Orden AB, Arenas MA, Fano V. Argentine references for the assessment of body proportions from birth to 17 years of age. Arch Argent Pediatr 2017; 115 (03) 234-240
  • 29 del Pino M, Orden AB, Arenas MA, Caino SA, Fano V. Argentine reference values for sitting height and lower limb length between 0 and 18 years of age. Referencias Argentinas de estatura sentada y longitud de miembros inferiores de 0 a 18 años. Med Infant 2016; 23 (04) 279-286
  • 30 Lejarraga H, del Pino M, Fano V, Caino S, Cole TJ. Referencias de peso y estatura desde el nacimiento hasta la madurez para niñas y niños argentinos: Incorporación de datos de la OMS de 0 a 2 años, recálculo de percentilos para obtención de valores LMS. [Growth references for weight and height for Argentinian girls and boys from birth to maturity: incorporation of data from the World Health Organisation from birth to 2 years and calculation of new percentiles and LMS values] Arch Argent Pediatr 2009; 107 (02) 126-133
  • 31 Sentchordi-Montané L, Benito-Sanz S, Aza-Carmona M. et al. High prevalence of variants in skeletal dysplasia associated genes in individuals with short stature and minor skeletal anomalies. Eur J Endocrinol 2021; 185 (05) 691-705
  • 32 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 33 Baudier J, Jenkins ZA, Robertson SP. The filamin-B-refilin axis - spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131 (08) jcs213959
  • 34 Gay O, Gilquin B, Nakamura F. et al. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci U S A 2011; 108 (28) 11464-11469
  • 35 Yasin S, Makitie O, Naz S. Spondylocarpotarsal synostosis syndrome due to a novel loss of function FLNB variant: a case report. BMC Musculoskelet Disord 2021; 22 (01) 31