Semin Respir Crit Care Med 2023; 44(02): 287-296
DOI: 10.1055/s-0042-1759883
Review Article

Nontuberculous Mycobacteria in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Regulator Modulators

Andrew Burke
1   Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
2   Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
,
Rachel M. Thomson
1   Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
3   Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
,
Claire E. Wainwright
5   Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Australia
6   Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia
,
Scott C. Bell
1   Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
6   Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia
7   Translational Research Institute, Woolloongabba, Australia
› Institutsangaben
Funding S.C.B., C.E.W., R.M.T. acknowledge funding by the NHMRC (grant numbers: 1102494 and 1152249) and CF Foundation (U.S.; grant numbers: BELL19A0 and WAINWR19A0). R.M.T. acknowledges funding from a Queensland Advancing Clinical Research Fellowship.

Abstract

Nontuberculous mycobacteria (NTM) are a group of mycobacteria which represent opportunistic pathogens that are of increasing concern in people with cystic fibrosis (pwCF). The acquisition has been traditionally though to be from environmental sources, though recent work has suggested clustered clonal infections do occur and transmission potential demonstrated among pwCF attending CF specialist centers. Guidelines for the screening, diagnosis, and identification of NTM and management of pwCF have been published. The emergence of CF-specific therapies, in particular cystic fibrosis transmembrane regulator (CFTR) modulator drugs, have led to significant improvement in the health and well-being of pwCF and may lead to challenges in sampling the lower respiratory tract including to screen for NTM. This review highlights the epidemiology, modes of acquisition, screening and diagnosis, therapeutic approaches in the context of improved clinical status for pwCF, and the clinical application of CFTR modulator therapies.



Publikationsverlauf

Artikel online veröffentlicht:
17. Januar 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2020; 10: 1662
  • 2 McBennett KA, Davis PB, Konstan MW. Increasing life expectancy in cystic fibrosis: advances and challenges. Pediatr Pulmonol 2022; 57 (suppl 1): S5-S12
  • 3 Scotet V, L'Hostis C, Férec C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR gene discovery. Genes (Basel) 2020; 11 (06) 589
  • 4 Bessonova L, Volkova N, Higgins M. et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax 2018; 73 (08) 731-740
  • 5 De Boeck K. Cystic fibrosis in the year 2020: a disease with a new face. Acta Paediatr 2020; 109 (05) 893-899
  • 6 Griffith DE, Aksamit T, Brown-Elliott BA. et al; ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (04) 367-416
  • 7 Floto RA, Olivier KN, Saiman L. et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax 2016; 71 (01) 88-90
  • 8 Burke A, Smith D, Coulter C, Bell SC, Thomson R, Roberts JA. Clinical pharmacokinetic and pharmacodynamic considerations in the drug treatment of non-tuberculous mycobacteria in cystic fibrosis. Clin Pharmacokinet 2021; 60 (09) 1081-1102
  • 9 Smith MJ, Efthimiou J, Hodson ME, Batten JC. Mycobacterial isolations in young adults with cystic fibrosis. Thorax 1984; 39 (05) 369-375
  • 10 Boxerbaum B. Isolation of rapidly growing mycobacteria in patients with cystic fibrosis. J Pediatr 1980; 96 (04) 689-691
  • 11 Qvist T, Gilljam M, Jönsson B. et al; Scandinavian Cystic Fibrosis Study Consortium (SCFSC). Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia. J Cyst Fibros 2015; 14 (01) 46-52
  • 12 Gardner AI, McClenaghan E, Saint G, McNamara PS, Brodlie M, Thomas MF. Epidemiology of nontuberculous mycobacteria infection in children and young people with cystic fibrosis: analysis of UK cystic fibrosis registry. Clin Infect Dis 2019; 68 (05) 731-737
  • 13 Zolin A, Orenti A, Naehrlich L. et al. ECFS Patient Registry Annual Data Report 2018. ECFSPR; 2020
  • 14 Hatziagorou E, Orenti A, Drevinek P, Kashirskaya N, Mei-Zahav M, De Boeck K. ECFSPR. Electronic address: ECFS-Patient.Registry@uz.kuleuven.ac.be, ECFSPR. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis-data from the European cystic fibrosis society patient registry. J Cyst Fibros 2020; 19 (03) 376-383
  • 15 Giordani B, Amato A, Majo F. et al; Gruppo di Lavoro RIFC. [Italian Cystic Fibrosis Registry (ICFR). Report 2015-2016]. Epidemiol Prev 2019; 43 (4S1): 1-36
  • 16 Bar-On O, Mussaffi H, Mei-Zahav M. et al. Increasing nontuberculous mycobacteria infection in cystic fibrosis. J Cyst Fibros 2015; 14 (01) 53-62
  • 17 Abidin NZ, Gardner AI, Robinson HL, Haq IJ, Thomas MF, Brodlie M. Trends in nontuberculous mycobacteria infection in children and young people with cystic fibrosis. J Cyst Fibros 2021; 20 (05) 737-741
  • 18 Adjemian J, Olivier KN, Prevots DR. Epidemiology of pulmonary nontuberculous mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc 2018; 15 (07) 817-826
  • 19 Low D, Wilson DA, Flume PA. Screening practices for nontuberculous mycobacteria at US cystic fibrosis centers. J Cyst Fibros 2020; 19 (04) 569-574
  • 20 Adjemian J, Olivier KN, Prevots DR. Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med 2014; 190 (05) 581-586
  • 21 Levy I, Grisaru-Soen G, Lerner-Geva L. et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 2008; 14 (03) 378-384
  • 22 Olivier KN, Weber DJ, Lee J-H. et al; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Nontuberculous mycobacteria. II: nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167 (06) 835-840
  • 23 Esther Jr CR, Esserman DA, Gilligan P, Kerr A, Noone PG. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 2010; 9 (02) 117-123
  • 24 Verregghen M, Heijerman HG, Reijers M, van Ingen J, van der Ent CK. Risk factors for Mycobacterium abscessus infection in cystic fibrosis patients; a case-control study. J Cyst Fibros 2012; 11 (04) 340-343
  • 25 Renna M, Schaffner C, Brown K. et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest 2011; 121 (09) 3554-3563
  • 26 Catherinot E, Roux A-L, Vibet M-A. et al; OMA Group. Inhaled therapies, azithromycin and Mycobacterium abscessus in cystic fibrosis patients. Eur Respir J 2013; 41 (05) 1101-1106
  • 27 Binder AM, Adjemian J, Olivier KN, Prevots DR. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med 2013; 188 (07) 807-812
  • 28 Sherrard LJ, Tay GT, Butler CA. et al. Tropical Australia is a potential reservoir of non-tuberculous mycobacteria in cystic fibrosis. Eur Respir J 2017; 49 (05) 1700046
  • 29 Cogen JD, Onchiri F, Emerson J. et al. Chronic azithromycin use in cystic fibrosis and risk of treatment-emergent respiratory pathogens. Ann Am Thorac Soc 2018; 15 (06) 702-709
  • 30 Frost FJ, Nazareth DS, Charman SC, Winstanley C, Walshaw MJ. Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. A cohort study using national registry data. Ann Am Thorac Soc 2019; 16 (11) 1375-1382
  • 31 Ricotta EE, Prevots DR, Olivier KN. CFTR modulator use and risk of nontuberculous mycobacteria positivity in cystic fibrosis, 2011-2018. ERJ Open Res 2022; 8 (02) 00724-02021
  • 32 Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol 2013; 51 (09) 3006-3011
  • 33 Halstrom S, Price P, Thomson R. Review: environmental mycobacteria as a cause of human infection. Int J Mycobacteriol 2015; 4 (02) 81-91
  • 34 Hoefsloot W, van Ingen J, Andrejak C. et al; Nontuberculous Mycobacteria Network European Trials Group. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 2013; 42 (06) 1604-1613
  • 35 Adjemian J, Olivier KN, Seitz AE, Falkinham JO, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 2012; 185 (08) 881-886
  • 36 Chou MP, Clements AC, Thomson RM. A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Infect Dis 2014; 14: 279
  • 37 Prevots DR, Adjemian J, Fernandez AG, Knowles MR, Olivier KN. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc 2014; 11 (07) 1032-1038
  • 38 Aitken ML, Limaye A, Pottinger P. et al. Respiratory outbreak of Mycobacterium abscessus subspecies Massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012; 185 (02) 231-232
  • 39 Bryant JM, Grogono DM, Greaves D. et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013; 381 (9877): 1551-1560
  • 40 Bryant JM, Grogono DM, Rodriguez-Rincon D. et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016; 354 (6313): 751-757
  • 41 Malcolm KC, Caceres SM, Honda JR. et al. Mycobacterium abscessus displays fitness for fomite transmission. Appl Environ Microbiol 2017; 83 (19) e00562-e17
  • 42 Strong M, Davidson RM. Microbiology: bacterial transmission tactics. Nature 2017; 543 (7646): 495-496
  • 43 Ruis C, Bryant JM, Bell SC. et al. Dissemination of Mycobacterium abscessus via global transmission networks. Nat Microbiol 2021; 6 (10) 1279-1288
  • 44 Yan J, Kevat A, Martinez E. et al. Investigating transmission of Mycobacterium abscessus amongst children in an Australian cystic fibrosis centre. J Cyst Fibros 2020; 19 (02) 219-224
  • 45 Gross JE, Caceres S, Poch K. et al. Investigating nontuberculous mycobacteria transmission at the Colorado Adult Cystic Fibrosis Program. Am J Respir Crit Care Med 2022; 205 (09) 1064-1074
  • 46 Davidson RM, Hasan NA, Epperson LE. et al. Population genomics of Mycobacterium abscessus from U.S. Cystic Fibrosis Care Centers. Ann Am Thorac Soc 2021; 18 (12) 1960-1969
  • 47 Tortoli E, Kohl TA, Trovato A. et al. Mycobacterium abscessus in patients with cystic fibrosis: low impact of inter-human transmission in Italy. Eur Respir J 2017; 50 (01) 1602525
  • 48 Doyle RM, Rubio M, Dixon G. et al. Cross-transmission is not the source of new Mycobacterium abscessus infections in a multicenter cohort of cystic fibrosis patients. Clin Infect Dis 2020; 70 (09) 1855-1864
  • 49 Wetzstein N, Diricks M, Kohl TA. et al. Molecular epidemiology of Mycobacterium abscessus isolates recovered from German cystic fibrosis patients. Microbiol Spectr 2022; 10 (04) e0171422
  • 50 Lipworth S, Hough N, Weston N. et al. Epidemiology of Mycobacterium abscessus in England: an observational study. Lancet Microbe 2021; 2 (10) e498-e507
  • 51 Daley CL, Iaccarino JM, Lange C. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 2020; 71 (04) e1-e36
  • 52 Kwak N, Lee CH, Lee HJ. et al. Non-tuberculous mycobacterial lung disease: diagnosis based on computed tomography of the chest. Eur Radiol 2016; 26 (12) 4449-4456
  • 53 Plongla R, Preece CL, Perry JD, Gilligan PH. Evaluation of RGM medium for isolation of nontuberculous mycobacteria from respiratory samples from patients with cystic fibrosis in the United States. J Clin Microbiol 2017; 55 (05) 1469-1477
  • 54 Preece CL, Wichelhaus TA, Perry A. et al. Evaluation of various culture media for detection of rapidly growing mycobacteria from patients with cystic fibrosis. J Clin Microbiol 2016; 54 (07) 1797-1803
  • 55 Scohy A, Gohy S, Mathys V. et al. Comparison of the RGM medium and the mycobacterial growth indicator tube automated system for isolation of non-tuberculous mycobacteria from sputum samples of cystic fibrosis patients in Belgium. J Clin Tuberc Other Mycobact Dis 2018; 13: 1-4
  • 56 Rotcheewaphan S, Odusanya OE, Henderson CM. et al. Performance of RGM medium for isolation of nontuberculous mycobacteria from respiratory specimens from non-cystic fibrosis patients. J Clin Microbiol 2019; 57 (02) e01519-e18
  • 57 Caverly LJ, Carmody LA, Haig SJ. et al. Culture-independent identification of nontuberculous mycobacteria in cystic fibrosis respiratory samples. PLoS One 2016; 11 (04) e0153876
  • 58 Bordin A, Pandey S, Coulter C. et al. Rapid macrolide and amikacin resistance testing for Mycobacterium abscessus in people with cystic fibrosis. J Med Microbiol 2021; 70 (04) DOI: 10.1099/jmm.0.001349.
  • 59 Ramsay KA, Sandhu H, Geake JB. et al. The changing prevalence of pulmonary infection in adults with cystic fibrosis: a longitudinal analysis. J Cyst Fibros 2017; 16 (01) 70-77
  • 60 De P, Amin AG, Graham B. et al. Urine lipoarabinomannan as a marker for low-risk of NTM infection in the CF airway. J Cyst Fibros 2020; 19 (05) 801-807
  • 61 Ravnholt C, Qvist T, Kolpen M, Pressler T, Skov M, Høiby N. Antibody response against Mycobacterium avium complex in cystic fibrosis patients measured by a novel IgG ELISA test. J Cyst Fibros 2019; 18 (04) 516-521
  • 62 Qvist T, Pressler T, Taylor-Robinson D, Katzenstein TL, Høiby N. Serodiagnosis of Mycobacterium abscessus complex infection in cystic fibrosis. Eur Respir J 2015; 46 (03) 707-716
  • 63 Le Moigne V, Roux AL, Mahoudo H. et al. IgA serological response for the diagnosis of Mycobacterium abscessus infections in patients with cystic fibrosis. Microbiol Spectr 2022; 10 (03) e0019222
  • 64 Le Moigne V, Roux AL, Mahoudo H. et al. Serological biomarkers for the diagnosis of Mycobacterium abscessus infections in cystic fibrosis patients. J Cyst Fibros 2022; 21 (02) 353-360
  • 65 Jeong BH, Kim SY, Jeon K, Lee SY, Shin SJ, Koh WJ. Serodiagnosis of Mycobacterium avium complex and Mycobacterium abscessus complex pulmonary disease by use of IgA antibodies to glycopeptidolipid core antigen. J Clin Microbiol 2013; 51 (08) 2747-2749
  • 66 Henkle E, Aksamit T, Barker A. et al; NTMRC Patient Advisory Panel. Patient-centered research priorities for pulmonary nontuberculous mycobacteria (NTM) infection. An NTM research consortium workshop report. Ann Am Thorac Soc 2016; 13 (09) S379-S384
  • 67 Haworth CS, Banks J, Capstick T. et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017; 72 (suppl 2): ii1-ii64
  • 68 Miwa S, Shirai M, Toyoshima M. et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc 2014; 11 (01) 23-29
  • 69 Ruth MM, Sangen JJN, Remmers K. et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother 2019; 74 (04) 935-943
  • 70 Ferro BE, Meletiadis J, Wattenberg M. et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother 2015; 60 (02) 1097-1105
  • 71 Ruth MM, Sangen JJN, Pennings LJ. et al. Minocycline has no clear role in the treatment of Mycobacterium abscessus disease. Antimicrob Agents Chemother 2018; 62 (10) e01208-e01218
  • 72 Khadawardi H, Marras TK, Mehrabi M, Brode SK. Clinical efficacy and safety of fluoroquinolone containing regimens in patients with Mycobacterium avium complex pulmonary disease. Eur Respir J 2020; 55 (04) 1901240
  • 73 Lee JH, Park YE, Chong YP, Shim TS, Jo KW. Efficacy of fluoroquinolones as substitutes for ethambutol or rifampin in the treatment of Mycobacterium avium complex pulmonary disease according to radiologic types. Antimicrob Agents Chemother 2022; 66 (02) e0152221
  • 74 Morimoto K, Namkoong H, Hasegawa N. et al; Nontuberculous Mycobacteriosis Japan Research Consortium. Macrolide-resistant Mycobacterium avium complex lung disease: analysis of 102 consecutive cases. Ann Am Thorac Soc 2016; 13 (11) 1904-1911
  • 75 Griffith DE, Brown-Elliott BA, Langsjoen B. et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174 (08) 928-934
  • 76 Griffith DE, Eagle G, Thomson R. et al; CONVERT Study Group. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT): a prospective, open-label, randomized study. Am J Respir Crit Care Med 2018; 198 (12) 1559-1569
  • 77 Olivier KN, Griffith DE, Eagle G. et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195 (06) 814-823
  • 78 DaCosta A, Jordan CL, Giddings O, Lin FC, Gilligan P, Esther Jr CR. Outcomes associated with antibiotic regimens for treatment of Mycobacterium abscessus in cystic fibrosis patients. J Cyst Fibros 2017; 16 (04) 483-487
  • 79 Tippett E, Ellis S, Wilson J, Kotsimbos T, Spelman D. Mycobacterium abscessus complex: natural history and treatment outcomes at a tertiary adult cystic fibrosis center. Int J Mycobacteriol 2018; 7 (02) 109-116
  • 80 Shen Y, Wang X, Jin J. et al. In vitro susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum isolates to 30 antibiotics. BioMed Res Int 2018; 2018: 4902941
  • 81 Luo L, Li B, Chu H. et al. Characterization of Mycobacterium abscessus subtypes in Shanghai of China: drug sensitivity and bacterial epidemicity as well as clinical manifestations. Medicine (Baltimore) 2016; 95 (03) e2338
  • 82 Ferro BE, Srivastava S, Deshpande D. et al. Moxifloxacin's limited efficacy in the hollow-fiber model of Mycobacterium abscessus disease. Antimicrob Agents Chemother 2016; 60 (06) 3779-3785
  • 83 Brown-Elliott BA, Wallace Jr RJ. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol 2017; 55 (06) 1747-1754
  • 84 Brown-Elliott BA, Wallace Jr RJ. In vitro susceptibility testing of bedaquiline against Mycobacterium abscessus complex. Antimicrob Agents Chemother 2019; 63 (02) e01919-e18
  • 85 Ronchetti K, Tame JD, Paisey C. et al. The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med 2018; 6 (06) 461-471
  • 86 Ahmed MI, Kulkarni H, Shajpal S. et al. Early detection of non-tuberculous mycobacteria in children with cystic fibrosis using induced sputum at annual review. Pediatr Pulmonol 2019; 54 (03) 257-263
  • 87 Ferreira ACM, Marson FAL, Cohen MA. et al. Hypertonic saline as a useful tool for sputum induction and pathogen detection in cystic fibrosis. Lung 2017; 195 (04) 431-439
  • 88 Martiniano SL, Esther CR, Haworth CS, Kasperbauer SH, Zemanick ET, Caverly LJ. Challenging scenarios in nontuberculous mycobacterial infection in cystic fibrosis. Pediatr Pulmonol 2020; 55 (02) 521-525
  • 89 Ziedalski TM, Kao PN, Henig NR, Jacobs SS, Ruoss SJ. Prospective analysis of cystic fibrosis transmembrane regulator mutations in adults with bronchiectasis or pulmonary nontuberculous mycobacterial infection. Chest 2006; 130 (04) 995-1002
  • 90 Diel R, Ringshausen F, Richter E, Welker L, Schmitz J, Nienhaus A. Microbiological and clinical outcomes of treating non-Mycobacterium avium complex nontuberculous mycobacterial pulmonary disease: a systematic review and meta-analysis. Chest 2017; 152 (01) 120-142
  • 91 Rowbotham NJ, Smith S, Leighton PA. et al. The top 10 research priorities in cystic fibrosis developed by a partnership between people with CF and healthcare providers. Thorax 2018; 73 (04) 388-390