Journal of Pediatric Epilepsy 2023; 12(01): 021-028
DOI: 10.1055/s-0042-1760105
Review Article

Invasive Epilepsy Monitoring: The Switch from Subdural Electrodes to Stereoelectroencephalography

Rohini Coorg
1   Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
2   Department of Neurology and Developmental Neuroscience, Texas Children's Hospital, Houston, Texas, United States
,
Elaine S. Seto
1   Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
2   Department of Neurology and Developmental Neuroscience, Texas Children's Hospital, Houston, Texas, United States
› Author Affiliations

Abstract

Stereoelectroencephalography (SEEG) has experienced an explosion in use due to a shifting understanding of epileptic networks and wider application of minimally invasive epilepsy surgery techniques. Both subdural electrode (SDE) monitoring and SEEG serve important roles in defining the epileptogenic zone, limiting functional deficits, and formulating the most effective surgical plan. Strengths of SEEG include the ability to sample difficult to reach, deep structures of the brain without a craniotomy and without disrupting the dura. SEEG is complementary to minimally invasive epilepsy treatment options and may reduce the treatment gap in patients who are hesitant about craniotomy and surgical resection. Understanding the strengths and limitations of SDE monitoring and SEEG allows epileptologists to choose the best modality of invasive monitoring for each patient living with drug-resistant seizures.



Publication History

Received: 13 November 2022

Accepted: 13 November 2022

Article published online:
06 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342 (05) 314-319
  • 2 Berg AT, Vickrey BG, Testa FM. et al. How long does it take for epilepsy to become intractable? A prospective investigation. Ann Neurol 2006; 60 (01) 73-79
  • 3 Fountain NB, Van Ness PC, Swain-Eng R, Tonn S, Bever Jr CT. American Academy of Neurology Epilepsy Measure Development Panel and the American Medical Association-Convened Physician Consortium for Performance Improvement Independent Measure Development Process. Quality improvement in neurology: AAN epilepsy quality measures: Report of the Quality Measurement and Reporting Subcommittee of the American Academy of Neurology. Neurology 2011; 76 (01) 94-99
  • 4 Blumcke I, Spreafico R, Haaker G. et al; EEBB Consortium. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. N Engl J Med 2017; 377 (17) 1648-1656
  • 5 Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005; 128 (Pt 5): 1188-1198
  • 6 Englot DJ, Ouyang D, Garcia PA, Barbaro NM, Chang EF. Epilepsy surgery trends in the United States, 1990-2008. Neurology 2012; 78 (16) 1200-1206
  • 7 Ravindra VM, Sweney MT, Bollo RJ. Recent developments in the surgical management of paediatric epilepsy. Arch Dis Child 2017; 102 (08) 760-766
  • 8 Matern TS, DeCarlo R, Ciliberto MA, Singh RK. Palliative epilepsy surgery procedures in children. Semin Pediatr Neurol 2021; 39: 100912
  • 9 Seto ES, Coorg R. Epilepsy surgery: monitoring and novel surgical techniques. Neurol Clin 2021; 39 (03) 723-742
  • 10 Jehi L. The epileptogenic zone: concept and definition. Epilepsy Curr 2018; 18 (01) 12-16
  • 11 Jayakar P, Gotman J, Harvey AS. et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia 2016; 57 (11) 1735-1747
  • 12 Lüders HO, Engel J, Munari C. General principles. In: Jerome Engle Jr, ed. Surgical Treatment of the Epilepsies. 2nd edition. New York, NY, USA: Raven Press; 1993: 137-153
  • 13 Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disord 2006; 8 (Suppl 2): S1-S9
  • 14 Hamer HM, Morris HH, Mascha EJ. et al. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology 2002; 58 (01) 97-103
  • 15 Harroud A, Bouthillier A, Weil AG, Nguyen DK. Temporal lobe epilepsy surgery failures: a review. Epilepsy Res Treat 2012; 2012: 201651 DOI: 10.1155/2012/201651.
  • 16 Perven G, Podkorytova I, Ding K. et al. Non-lesional mesial temporal lobe epilepsy requires bilateral invasive evaluation. Epilepsy Behav Rep 2021; 15: 100441 DOI: 10.1016/j.ebr.2021.100441.
  • 17 Fountas KN, King DW, Jenkins PD, Smith JR. Nonhabitual seizures in patients with implanted subdural electrodes. Stereotact Funct Neurosurg 2004; 82 (04) 165-168
  • 18 Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia 2013; 54 (05) 828-839
  • 19 Talairach J, Bancaud J. Lesion, “irritative” zone and epileptogenic focus. Confin Neurol 1966; 27 (01) 91-94
  • 20 Tantawi M, Miao J, Matias C. et al. Gray matter sampling differences between subdural electrodes and stereoelectroencephalography electrodes. Front Neurol 2021; 12: 669406 DOI: 10.3389/fneur.2021.669406.
  • 21 Kalamangalam GP, Tandon N. Stereo-EEG implantation strategy. J Clin Neurophysiol 2016; 33 (06) 483-489
  • 22 Kahane P, Barba C, Rheims S, Job-Chapron AS, Minotti L, Ryvlin P. The concept of temporal 'plus' epilepsy. Rev Neurol (Paris) 2015; 171 (03) 267-272
  • 23 Olivier A, Boling WW, Tanriverdi T. Techniques in epilepsy surgery: the MNI approach. New York, NY, USA: Cambridge medicine. Cambridge University Press; 2012
  • 24 Ostergard T, Miller JP. Depth electrodes: Approaches and complications. In: Lhatoo SD, Kahane P, Lüders HO, eds. Invasive Studies of the Human Epileptic Brain. New York, NY, USA: Oxford University Press; 2019: 50-64
  • 25 Lee SA, Spencer DD, Spencer SS. Intracranial EEG seizure-onset patterns in neocortical epilepsy. Epilepsia 2000; 41 (03) 297-307
  • 26 Lagarde S, Buzori S, Trebuchon A. et al. The repertoire of seizure onset patterns in human focal epilepsies: determinants and prognostic values. Epilepsia 2019; 60 (01) 85-95
  • 27 Ochi A, Otsubo H, Donner EJ. et al. Dynamic changes of ictal high-frequency oscillations in neocortical epilepsy: using multiple band frequency analysis. Epilepsia 2007; 48 (02) 286-296
  • 28 Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 2008; 131 (Pt 7): 1818-1830
  • 29 Kim DW, Kim HK, Lee SK, Chu K, Chung CK. Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis. Epilepsia 2010; 51 (06) 1010-1017
  • 30 Bartolomei F, Lagarde S, Wendling F. et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia 2017; 58 (07) 1131-1147
  • 31 Hashemi M, Vattikonda AN, Sip V. et al. The Bayesian Virtual Epileptic Patient: a probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. Neuroimage 2020; 217: 116839
  • 32 Kovac S, Kahane P, Diehl B. Seizures induced by direct electrical cortical stimulation–mechanisms and clinical considerations. Clin Neurophysiol 2016; 127 (01) 31-39
  • 33 Ritaccio AL, Brunner P, Schalk G. Electrical stimulation mapping of the brain: basic principles and emerging alternatives. J Clin Neurophysiol 2018; 35 (02) 86-97
  • 34 Sinai A, Bowers CW, Crainiceanu CM. et al. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 2005; 128 (Pt 7): 1556-1570
  • 35 Brown EC, Rothermel R, Nishida M. et al. In vivo animation of auditory-language-induced gamma-oscillations in children with intractable focal epilepsy. Neuroimage 2008; 41 (03) 1120-1131
  • 36 Kim LH, Parker JJ, Ho AL. et al. Postoperative outcomes following pediatric intracranial electrode monitoring: a case for stereoelectroencephalography (SEEG). Epilepsy Behav 2020; 104 (Pt A): 106905
  • 37 Jehi L, Morita-Sherman M, Love TE. et al. Comparative effectiveness of stereotactic electroencephalography versus subdural grids in epilepsy surgery. Ann Neurol 2021; 90 (06) 927-939
  • 38 Mullin JP, Shriver M, Alomar S. et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016; 57 (03) 386-401
  • 39 Kim W, Shen MY, Provenzano FA. et al. The role of stereo-electroencephalography to localize the epileptogenic zone in children with nonlesional brain magnetic resonance imaging. Epilepsy Res 2021; 179: 106828 DOI: 10.1016/j.eplepsyres.2021.106828.
  • 40 Steriade C, Martins W, Bulacio J. et al. Localization yield and seizure outcome in patients undergoing bilateral SEEG exploration. Epilepsia 2019; 60 (01) 107-120
  • 41 Dwivedi R, Ramanujam B, Chandra PS. et al. Surgery for drug-resistant epilepsy in children. N Engl J Med 2017; 377 (17) 1639-1647
  • 42 Aaberg KM, Gunnes N, Bakken IJ. et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics 2017; 139 (05) x
  • 43 WHO | Epilepsy: a public health imperative. WHO. 2019–06–20 15:12:23 2019;doi:/entity/mental_health/neurology/epilepsy/report_2019/en/index.html
  • 44 Mitchell WG, Chavez JM, Lee H, Guzman BL. Academic underachievement in children with epilepsy. J Child Neurol 1991; 6 (01) 65-72
  • 45 Mahler B, Carlsson S, Andersson T, Tomson T. Risk for injuries and accidents in epilepsy: a prospective population-based cohort study. Neurology 2018; 90 (09) e779-e789
  • 46 Nguyen T, Porter BE. Caregivers' impression of epilepsy surgery in patients with tuberous sclerosis complex. Epilepsy Behav 2020; 111: 107331
  • 47 Shen A, Quaid KT, Porter BE. Delay in pediatric epilepsy surgery: a caregiver's perspective. Epilepsy Behav 2018; 78: 175-178
  • 48 Gott PS. Cognitive abilities following right and left hemispherectomy. Cortex 1973; 9 (03) 266-274