RSS-Feed abonnieren
DOI: 10.1055/s-0042-1760678
A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Publikationsverlauf
Artikel online veröffentlicht:
25. Januar 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Macconkey A. Lactose-fermenting bacteria in faeces. J Hyg (Lond) 1905; 5 (03) 333-379
- 2 Hall IC. A constricted tube with mechanical seal for anaerobic fermentation tests. J Infect Dis 1921; 29 (04) 317-320
- 3 Sebald M, Hauser D. Pasteur, oxygen and the anaerobes revisited. Anaerobe 1995; 1 (01) 11-16
- 4 Behring E. Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr 1890; 16 (49) 1113-1114
- 5 Fleischmann RD, Adams MD, White O. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269 (5223): 496-512
- 6 Fraser CM, Gocayne JD, White O. et al. The minimal gene complement of Mycoplasma genitalium. Science 1995; 270 (5235): 397-403
- 7 Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998; 5 (10) R245-R249
- 8 Tyson GW, Chapman J, Hugenholtz P. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428 (6978): 37-43
- 9 Cardona S, Eck A, Cassellas M. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol 2012; 12 (01) 158
- 10 Santiago A, Panda S, Mengels G. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol 2014; 14: 112
- 11 Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35 (09) 833-844
- 12 Wesolowska-Andersen A, Bahl MI, Carvalho V. et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2014; 2: 19
- 13 Szóstak N, Szymanek A, Havránek J. et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci Rep 2022; 12 (01) 8470
- 14 Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020; 30 (03) 315-333
- 15 Eren AM, Kiefl E, Shaiber A. et al. Community-led, integrated, reproducible multi-omics with anvi'o. Nat Microbiol 2021; 6 (01) 3-6
- 16 Yaung SJ, Deng L, Li N. et al. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol Syst Biol 2015; 11 (03) 788
- 17 Shaiber A, Willis AD, Delmont TO. et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol 2020; 21 (01) 292
- 18 Pasolli E, Asnicar F, Manara S. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019; 176 (03) 649-662.e20
- 19 Kong C, Liang L, Liu G. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut 2022;(August):gutjnl-2022-327156
- 20 Nagata N, Nishijima S, Kojima Y. et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 2022; 163 (01) 222-238
- 21 Reck M, Tomasch J, Deng Z, Jarek M, Husemann P, Wagner-Döbler I. COMBACTE Consortium. Stool metatranscriptomics: a technical guideline for mRNA stabilisation and isolation. BMC Genomics 2015; 16 (01) 494
- 22 Singh A, Vats S, Bhargava P. Advances and Challenges in Metatranscriptomic Analysis. Microbial Metatranscriptomics Belowground. 2021: 453-469
- 23 Schirmer M, Franzosa EA, Lloyd-Price J. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 2018; 3 (03) 337-346
- 24 Tanca A, Palomba A, Pisanu S. et al. A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 2014; 2 (01) 49
- 25 Tanca A, Abbondio M, Fiorito G. et al. Metaproteomic profile of the colonic luminal microbiota from patients with colon cancer. Front Microbiol 2022; 13: 869523
- 26 Long S, Yang Y, Shen C. et al. Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes 2020; 6 (01) 14
- 27 Allen BH, Gupta N, Edirisinghe JN, Faria JP, Henry CS. Application of the metabolic modeling pipeline in KBase to categorize reactions, predict essential genes, and predict pathways in an isolate genome. Methods Mol Biol 2022; 2349: 291-320
- 28 Dührkop K, Fleischauer M, Ludwig M. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 2019; 16 (04) 299-302
- 29 Wang M, Carver JJ, Phelan VV. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 2016; 34 (08) 828-837
- 30 Quinn RA, Melnik AV, Vrbanac A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020; 579 (7797): 123-129
- 31 Gumpenberger T, Brezina S, Keski-Rahkonen P. et al. Untargeted metabolomics reveals major differences in the plasma metabolome between colorectal cancer and colorectal adenomas. Metabolites 2021; 11 (02) 119
- 32 Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature 2019; 569 (7758): 641-648
- 33 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402): 207-214
- 34 Wang Z, Zolnik CP, Qiu Y. et al. Comparison of fecal collection methods for microbiome and metabolomics studies. Front Cell Infect Microbiol 2018; 8: 301
- 35 Costea PI, Zeller G, Sunagawa S. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 2017; 35 (11) 1069-1076
- 36 Salvato F, Hettich RL, Kleiner M. Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 2021; 17 (02) e1009245
- 37 Trefflich I, Marschall HU, Giuseppe RD. et al. Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores. Nutrients 2019; 12 (01) 47
- 38 Ramamoorthy S, Levy S, Mohamed M. et al. An ambient-temperature storage and stabilization device performs comparably to flash-frozen collection for stool metabolomics in infants. BMC Microbiol 2021; 21 (01) 59