Clin Colon Rectal Surg 2023; 36(02): 105-111
DOI: 10.1055/s-0042-1760679
Review Article

Role of Bacteria in the Development of Colorectal Cancer

Ryan M. Thomas
1   Department of Surgery, University of Florida, Gainesville, Florida
› Institutsangaben

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. Once limited to older populations, the incidence of CRC in patients under the age of 50 years is increasing and the etiology for this is uncertain. One hypothesis lies on the impact of the intestinal microbiome. The intestinal microbiome, composed primarily of bacteria but also viruses, fungi, and archaea, has been shown to regulate CRC development and progression both in vitro and in vivo. In this review, the role and intersection of the bacterial microbiome in various stages of clinical CRC development and management are discussed beginning with CRC screening. Various mechanisms whereby the microbiome has been shown to modulate CRC development including the influence of diet on the microbiome, bacterial-induced injury to the colonic epithelium, bacterial-produced toxins, and alteration of normal cancer immunosurveillance by the microbiome are discussed. Finally, the influence of microbiome on the response of CRC to treatment is discussed while highlighting ongoing clinical trials. The complexities of the microbiome and its role in CRC development and progression have become apparent and will require ongoing commitment to translate laboratory findings into meaningful clinical results that will aid more than 150,000 patients that develop CRC every year.



Publikationsverlauf

Artikel online veröffentlicht:
25. Januar 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020; 8 (02) e180-e190
  • 2 Akimoto N, Ugai T, Zhong R. et al. Rising incidence of early-onset colorectal cancer – a call to action. Nat Rev Clin Oncol 2021; 18 (04) 230-243
  • 3 Davidson KW, Barry MJ, Mangione CM. et al; US Preventive Services Task Force. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 2021; 325 (19) 1965-1977
  • 4 Imperiale TF, Ransohoff DF, Itzkowitz SH. et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014; 370 (14) 1287-1297
  • 5 Vogelstein B, Fearon ER, Hamilton SR. et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319 (09) 525-532
  • 6 Nakatsu G, Li X, Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015; 6: 8727
  • 7 Zeller G, Tap J, Voigt AY. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014; 10 (11) 766
  • 8 Peters BA, Dominianni C, Shapiro JA. et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome 2016; 4 (01) 69
  • 9 Rezasoltani S, Asadzadeh Aghdaei H, Dabiri H, Akhavan Sepahi A, Modarressi MH, Nazemalhosseini Mojarad E. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog 2018; 124: 244-249
  • 10 Kostic AD, Chun E, Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14 (02) 207-215
  • 11 Kartal E, Schmidt TSB, Molina-Montes E. et al; MAGIC Study investigators, PanGenEU Study investigators. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71 (07) 1359-1372
  • 12 O'Keefe SJD, Li JV, Lahti L. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6: 6342
  • 13 Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015; 148 (06) 1244-60.e16
  • 14 Arayici ME, Mert-Ozupek N, Yalcin F, Basbinar Y, Ellidokuz H. Soluble and insoluble dietary fiber consumption and colorectal cancer risk: a systematic review and meta-analysis. Nutr Cancer 2022; 74 (07) 2412-2425
  • 15 Feng Q, Liang S, Jia H. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015; 6: 6528
  • 16 Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 2007; 5 (05) 455-459
  • 17 Ijssennagger N, van der Meer R, van Mil SWC. Sulfide as a mucus barrier-breaker in inflammatory bowel disease?. Trends Mol Med 2016; 22 (03) 190-199
  • 18 Nguyen LH, Cao Y, Hur J. et al. The sulfur microbial diet is associated with increased risk of early-onset colorectal cancer precursors. Gastroenterology 2021; 161 (05) 1423-1432.e4
  • 19 Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7 (06) e39743
  • 20 Yazici C, Wolf PG, Kim H. et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 2017; 66 (11) 1983-1994
  • 21 Nguyen LH, Ma W, Wang DD. et al. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 2020; 158 (05) 1313-1325
  • 22 Bingham SA, Day NE, Luben R. et al; European Prospective Investigation into Cancer and Nutrition. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 2003; 361 (9368): 1496-1501
  • 23 Peters U, Sinha R, Chatterjee N. et al; Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Project Team. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet 2003; 361 (9368): 1491-1495
  • 24 Song M, Chan AT. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol 2019; 17 (02) 275-289
  • 25 Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982; 83 (02) 424-429
  • 26 Macfarlane GT, Englyst HN. Starch utilization by the human large intestinal microflora. J Appl Bacteriol 1986; 60 (03) 195-201
  • 27 Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 2016; 5 (04) e73
  • 28 Bordonaro M, Lazarova DL, Sartorelli AC. Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk?. Cell Cycle 2008; 7 (09) 1178-1183
  • 29 Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res 2014; 20 (04) 799-803
  • 30 Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 2008; 19 (09) 587-593
  • 31 Chen H-M, Yu YN, Wang JL. et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 2013; 97 (05) 1044-1052
  • 32 Chen D, Jin D, Huang S. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2020; 469: 456-467
  • 33 Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4659-4665
  • 34 Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008; 105 (39) 15064-15069
  • 35 Ott SJ, Musfeldt M, Wenderoth DF. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53 (05) 685-693
  • 36 Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126 (06) 1620-1633
  • 37 Lleal M, Sarrabayrouse G, Willamil J, Santiago A, Pozuelo M, Manichanh C. A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis. EBioMedicine 2019; 48: 630-641
  • 38 Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 2003; 52 (10) 1442-1447
  • 39 Roberts CL, Keita AV, Duncan SH. et al. Translocation of Crohn's disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 2010; 59 (10) 1331-1339
  • 40 Chassaing B, Koren O, Goodrich JK. et al. Corrigendum: dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2016; 536 (7615): 238
  • 41 Liu L, Dong W, Wang S. et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct 2018; 9 (11) 5588-5597
  • 42 Ocvirk S, O'Keefe SJ. Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet – gut microbiota interactions. Curr Nutr Rep 2017; 6 (04) 315-322
  • 43 Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235-271
  • 44 Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 2017; 5 (04) e1373208
  • 45 Elphick DA, Mahida YR. Paneth cells: their role in innate immunity and inflammatory disease. Gut 2005; 54 (12) 1802-1809
  • 46 Aghamajidi A, Maleki Vareki S. The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel) 2022; 14 (15) 3563
  • 47 Yu AI, Zhao L, Eaton KA. et al. Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis. Cell Rep 2020; 31 (01) 107471
  • 48 Ivanov II, Atarashi K, Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139 (03) 485-498
  • 49 Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR. et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 2021; 54 (12) 2812-2824.e4
  • 50 Wilson MR, Jiang Y, Villalta PW. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363 (6428): eaar7785
  • 51 Arthur JC, Perez-Chanona E, Mühlbauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338 (6103): 120-123
  • 52 Tomkovich S, Yang Y, Winglee K. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res 2017; 77 (10) 2620-2632
  • 53 Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A. et al; Genomics England Research Consortium. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli . Nature 2020; 580 (7802): 269-273
  • 54 Hwang S, Lee CG, Jo M. et al. Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int J Med Sci 2020; 17 (02) 145-152
  • 55 Boleij A, Hechenbleikner EM, Goodwin AC. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60 (02) 208-215
  • 56 Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest 2022; 132 (04) e155101
  • 57 Gur C, Ibrahim Y, Isaacson B. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42 (02) 344-355
  • 58 Mitsuhashi K, Nosho K, Sukawa Y. et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 2015; 6 (09) 7209-7220
  • 59 Hieken TJ, Chen J, Hoskin TL. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 2016; 6: 30751
  • 60 Rubinstein MR, Baik JE, Lagana SM. et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019; 20 (04) e47638
  • 61 Abed J, Emgård JE, Zamir G. et al. Fap2 Mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016; 20 (02) 215-225
  • 62 Meng Q, Gao Q, Mehrazarin S. et al. Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity. EMBO Rep 2021; 22 (07) e52891
  • 63 Yu T, Guo F, Yu Y. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170 (03) 548-563.e16
  • 64 Vétizou M, Pitt JM, Daillère R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350 (6264): 1079-1084
  • 65 Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271 (5256): 1734-1736
  • 66 He D, Li X, An R. et al. Response to PD-1-based immunotherapy for non-small cell lung cancer altered by gut microbiota. Oncol Ther 2021; 9 (02) 647-657
  • 67 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357 (6349): 409-413
  • 68 Mager LF, Burkhard R, Pett N. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020; 369 (6510): 1481-1489
  • 69 Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14 (06) 356-365
  • 70 Takasuna K, Hagiwara T, Hirohashi M. et al. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 1996; 56 (16) 3752-3757
  • 71 Bhatt AP, Pellock SJ, Biernat KA. et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A 2020; 117 (13) 7374-7381
  • 72 Jobin C. Precision medicine using microbiota. Science 2018; 359 (6371): 32-34
  • 73 Thomas RM, Jobin C. The microbiome and cancer: is the “oncobiome” mirage real?. Trends Cancer 2015; 1 (01) 24-35