Subscribe to RSS
DOI: 10.1055/s-0043-100599
MRT-basierter Quotient aus fetalem Lungen- und Ganzkörpervolumen als Prognosemarker für chronische Lungenerkrankung bei kongenitaler Zwerchfellhernie
MRI-Based Ratio of Fetal Lung to Body Volume as New Prognostic Marker for Chronic Lung Disease in Patients with Congenital Diaphragmatic HerniaPublication History
Publication Date:
25 April 2017 (online)
Zusammenfassung
Hintergrund Ziel dieser Studie war die Untersuchung der prognostischen Wertigkeit des MRT-basierten Quotienten aus fetalem Lungenvolumen (FLV) und fetalem Körpervolumen (FBV) im Hinblick auf die Entwicklung einer chronischen Lungenerkrankung (CLD) bei Feten mit kongenitaler Zwerchfellhernie (CDH).
Patienten und Methoden Bei 132 Kindern erfolgte im Rahmen dieser Studie eine Evaluation bzgl. der Entwicklung einer CLD und ggf. die Zuordnung zu einer der 3 Subgruppen (mild/moderat/schwer). Das fetale Lungen- und Körpervolumen wurde mittels fetaler MRT-Volumetrie ermittelt und hieraus der individuelle FLV/FBV-Quotient errechnet. Mittels logistischer Regressionsanalyse wurde die Wahrscheinlichkeit der postnatalen Entwicklung und Graduierung einer CLD in Abhängigkeit des Quotienten errechnet. Zusätzlich erfolgte die Beurteilung der prognostischen Wertigkeit durch Berechnung der ROC-Kurven (receiver operater characteristic) und AUC-Werte (area under the curve).
Ergebnisse 61 der 132 eingeschlossenen Feten entwickelten eine CLD (46,2%). Der Quotient FLV/FBV war bei den Feten mit Diagnose einer CLD signifikant niedriger (p=0,0008, AUC 0,743). Die Entwicklung einer CLD war darüberhinaus signifikant mit dem Vorhandensein intrathorakaler Leberanteile korreliert (p<0,001) sowie mit den perinatalen Parametern niedriges Gestationsalter (p=0,0052) bzw. ECMO-Bedarf (p<0,0001).
Schlussfolgerung Der MRT-basierte Quotient FLV/FBV ist ein hochwertiger prognostischer Parameter für die Entwicklung einer CLD. Frühe therapeutische Entscheidungen werden durch die Abschätzung der Prognose bzw. der Wahrscheinlichkeit der Entwicklung einer CLD durch den FLV/FBV-Quotienten unterstützt. Die prognostische Wertigkeit kann durch Berücksichtigung der perinatalen Parameter ECMO-Bedarf und Gestationsalter bei Geburt zusätzlich verbessert werden.
Abstract
Background Our aim was to evaluate the prognostic value of magnetic resonance imaging (MRI)-based ratio of fetal lung volume (FLV) to fetal body volume (FBV) as a marker for development of chronic lung disease (CLD) in fetuses with congenital diaphragmatic hernia (CDH).
Patients and Methods FLV and FBV were measured and the individual FLV/FBV ratio was calculated in 132 fetuses. Diagnosis of CLD was established following prespecified criteria and graded into mild/moderate/severe if present. Logistic regression analysis was used to calculate the probability of postnatal development of CLD in dependence of the FLV/FBV ratio. Receiver operating characteristic curves were analysed by calculating the area under the curve to evaluate the prognostic accuracy of this marker.
Results 61 of 132 fetuses developed CLD (46.21%). The FLV/FBV ratio was significantly lower in fetuses with CLD (p=0.0008; AUC 0.743). Development of CLD was significantly associated with thoracic herniation of liver parenchyma (p<0.0001), requirement of extracorporal membrane oxygenation (ECMO) (p<0.0001) and gestational age at delivery (p=0.0052).
Conclusion The MRI-based ratio of FLV to FBV is a highly valuable prenatal parameter for development of CLD. The ratio is helpful for early therapeutic decisions by estimating the probability to develop CLD. Perinatally, gestational age at delivery and ECMO requirement are useful additional parameters to further improve prediction of CLD.
-
Literatur
- 1 Barnewolt CE, Kunisaki SM, Fauza DO. et al. Percent predicted lung volumes as measured on fetal magnetic resonance imaging: A useful biometric parameter for risk stratification in congenital diaphragmatic hernia. J Pediatr Surg 2007; 42: 193-197
- 2 Bebbington M, Victoria T, Danzer E. et al. Comparison of ultrasound and magnetic resonance imaging parameters in predicting survival in isolated left-sided congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2014; 43: 670-674
- 3 Benachi A, Cordier AG, Cannie M. et al. Advances in prenatal diagnosis of congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19: 331-337
- 4 Büsing KA, Kilian AK, Schaible T. et al. Reliability and validity of MR image lung volume measurement in fetuses with congenital diaphragmatic hernia and in vitro lung models. Radiology 2008; 246: 553-561
- 5 Büsing KA, Kilian AK, Schaible T. et al. MR relative fetal lung volume in congenital diaphragmatic hernia: Survival and need for extracorporeal membrane oxygenation. Radiology 2008; 248: 240-246
- 6 Cannie M, Jani J, Meersschaert J. et al. Prenatal prediction of survival in isolated diaphragmatic hernia using observed to expected total fetal lung volume determined by magnetic resonance imaging based on either gestational age or fetal body volume. Ultrasound Obstet Gynecol 2008; 32: 633-639
- 7 Cannie M, Jani JC, De Keyzer F. et al. Fetal body volume: use at MR imaging to quantify relative lung volume in fetuses suspected of having pulmonary hypoplasia. Radiology 2006; 241: 847-853
- 8 Cannie MM, Jani JC, Van Kerkhove F. et al. Fetal body volume at MR imaging to quantify total fetal lung volume: Normal ranges. Radiology 2008; 247: 197-203
- 9 Colvin J, Bower C, Dickinson JE. et al. Outcomes of congenital diaphragmatic hernia: A population-based study in Western Australia. Pediatrics 2005; 116: e356-e363
- 10 De Paepe ME, Friedman RM, Gundogan F. et al. Postmortem lung weight/body weight standards for term and preterm infants. Pediatr Pulmonol 2005; 40: 445-448
- 11 De Paepe ME, Shapiro S, Hansen K. et al. Postmortem lung volume/body weight standards for term and preterm infants. Pediatr Pulmonol 2014; 49: 60-66
- 12 Debus A, Hagelstein C, Kilian AK. et al. Fetal lung volume in congenital diaphragmatic hernia: Association of prenatal MR imaging findings with postnatal chronic lung disease. Radiology 2013; 266: 887-895
- 13 Hedrick HL. Management of prenatally diagnosed congenital diaphragmatic hernia. Semin Pediatr Surg 2013; 22: 37-43
- 14 Jaillard SM, Pierrat V, Dubois A. et al. Outcome at 2 years of infants with congenital diaphragmatic hernia: A population-based study. Ann Thorac Surg 2003; 75: 250-256
- 15 Jani J, Nicolaides KH, Keller RL. et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 2007; 30: 67-71
- 16 Jani JC, Benachi A, Nicolaides KH. et al. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: A multicenter study. Ultrasound Obstet Gynecol 2009; 33: 64-69
- 17 Jobe AH, Bancalari E. Bronchopulmonary dysplasia. American journal of respiratory and critical care medicine 2001; 163: 1723-1729
- 18 Kastenholz KE, Weis M, Hagelstein C. et al. Correlation of observed-to-expected mri fetal lung volume and ultrasound lung-to-head ratio at different gestational times in fetuses with congenital diaphragmatic hernia. AJR Am J Roentgenol 2016; 206: 856-866
- 19 Kilian AK, Busing KA, Schaible T. et al. [Fetal magnetic resonance imaging. Diagnostics in congenital diaphragmatic hernia]. Radiologe 2006; 46: 128-132
- 20 Kilian AK, Busing KA, Schuetz EM. et al. Fetal MR lung volumetry in congenital diaphragmatic hernia (CDH): Prediction of clinical outcome and the need for extracorporeal membrane oxygenation (ECMO). Klin Padiatr 2009; 221: 295-301
- 21 Kilian AK, Schaible T, Hofmann V. et al. Congenital diaphragmatic hernia: Predictive value of MRI relative lung-to-head ratio compared with MRI fetal lung volume and sonographic lung-to-head ratio. AJR Am J Roentgenol 2009; 192: 153-158
- 22 Lally KP. Congenital diaphragmatic hernia. Curr Opin Pediatr 2002; 14: 486-490
- 23 Metkus AP, Filly RA, Stringer MD. et al. Sonographic predictors of survival in fetal diaphragmatic hernia. J Pediatr Surg 1996; 31: 148-151 discussion 151–142
- 24 Nawapun K, Sandaite I, Dekoninck P. et al. Comparison of matching by body volume or gestational age for calculation of observed to expected total lung volume in fetuses with isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2014; 44: 655-660
- 25 Neff KW, Kilian AK, Schaible T. et al. Prediction of mortality and need for neonatal extracorporeal membrane oxygenation in fetuses with congenital diaphragmatic hernia: Logistic regression analysis based on MRI fetal lung volume measurements. AJR Am J Roentgenol 2007; 189: 1307-1311
- 26 Reiss I, Schaible T, van den Hout L. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology 2010; 98: 354-364
- 27 Ruano R, Aubry MC, Dumez Y. et al. Predicting neonatal deaths and pulmonary hypoplasia in isolated congenital diaphragmatic hernia using the sonographic fetal lung volume-body weight ratio. AJR Am J Roentgenol 2008; 190: 1216-1219
- 28 Ruano R, Martinovic J, Aubry MC. et al. Predicting pulmonary hypoplasia using the sonographic fetal lung volume to body weight ratio – how precise and accurate is it?. Ultrasound Obstet Gynecol 2006; 28: 958-962
- 29 Rypens F, Metens T, Rocourt N. et al. Fetal lung volume: Estimation at MR imaging-initial results. Radiology 2001; 219: 236-241
- 30 Schaible T, Busing KA, Felix JF. et al. Prediction of chronic lung disease, survival and need for ECMO therapy in infants with congenital diaphragmatic hernia: Additional value of fetal MRI measurements?. Eur J Radiol 2012; 81: 1076-1082
- 31 Snoek KG, Capolupo I, van Rosmalen J. et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: A randomized clinical trial (The VICI-trial). Annals of surgery 2016; 263: 867-874
- 32 Sola JE, Bronson SN, Cheung MC. et al. Survival disparities in newborns with congenital diaphragmatic hernia: A national perspective. J Pediatr Surg 2010; 45: 1336-1342
- 33 Spoel M, van der Cammen-van Zijp MH, Hop WC. et al. Lung function in young adults with congenital diaphragmatic hernia; A longitudinal evaluation. Pediatr Pulmonol 2013; 48: 130-137
- 34 Tanigaki S, Miyakoshi K, Tanaka M. et al. Pulmonary hypoplasia: prediction with use of ratio of MR imaging-measured fetal lung volume to US-estimated fetal body weight. Radiology 2004; 232: 767-772
- 35 Walleyo A, Debus A, Kehl S. et al. Periodic MRI lung volume assessment in fetuses with congenital diaphragmatic hernia: prediction of survival, need for ECMO, and development of chronic lung disease. AJR Am J Roentgenol 2013; 201: 419-426
- 36 Weidner M, Hagelstein C, Debus A. et al. MRI-based ratio of fetal lung volume to fetal body volume as a new prognostic marker in congenital diaphragmatic hernia. AJR American journal of roentgenology 2014; 202: 1330-1336
- 37 Zamora IJ, Olutoye OO, Cass DL. et al. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH). J Pediatr Surg 2014; 49: 688-693