Klin Monbl Augenheilkd 2017; 234(03): 320-328
DOI: 10.1055/s-0043-101817
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Genersatztherapie bei hereditären Netzhauterkrankungen

Gene Replacement Therapy for Inherited Retinal Dystrophies
R. Mühlfriedel
Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard-Karls-Universität Tübingen
,
V. Sothilingam
Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard-Karls-Universität Tübingen
,
N. Tanimoto
Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard-Karls-Universität Tübingen
,
M. W. Seeliger
Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard-Karls-Universität Tübingen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 14. Dezember 2016

akzeptiert 12. Januar 2017

Publikationsdatum:
29. März 2017 (online)

Zusammenfassung

Charakteristisch für erblich bedingte Netzhauterkrankungen sind Funktionsausfälle in der Reizaufnahme und Reizweiterleitung innerhalb der Netzhaut, die zur Reduktion des Sehvermögens bis zur Blindheit führen. Dabei verursachen genetisch bedingte Ausfälle photorezeptorspezifischer Gene eine große Zahl von klinisch und ursächlich abgrenzbaren Krankheitsbildern, wobei jedes für sich zu den seltenen Erkrankungen gehört. In ihrer Gesamtheit und mit einer Prävalenz von 1 : 2500 sind die erblichen Netzhauterkrankungen jedoch ein klinisch bedeutsamer Erkrankungstypus – insbesondere auch im Hinblick auf die damit einhergehenden Einschränkungen in der Erwerbsfähigkeit und dem Verlust an Lebensqualität für die Betroffenen. Bis heute konnten Mutationen in über 250 Genen identifiziert werden, die für die verschiedenen Formen erblicher Netzhautdystrophien verantwortlich sind (https://sph.uth.tmc.edu/Retnet). Die präklinische Forschung an geeigneten Tiermodellen hat in den letzten Jahren große Fortschritte im Verständnis der Mutation zugrunde liegender pathologischer und molekularbiologischer Vorgänge ermöglicht. Basierend auf diesen Erkenntnissen haben sich neue Perspektiven für die Entwicklung innovativer Therapiestrategien für erbliche Netzhauterkrankungen beim Menschen eröffnet, welche weltweit bislang noch nicht heilbar sind. Der Erfolg präklinischer Studien hat zum Beginn mehrerer humaner Translationen geführt. Die Ergebnislage der laufenden humanen Studien macht jedoch auch die Notwendigkeit sichtbar, Optimierungsstrategien des neuen therapeutischen Ansatzes zu entwickeln und zu prüfen.

Abstract

Characteristics of inherited retinal dystrophies include deficiencies in light perception and nervous conduction within the retina, leading to reduced vision or even blindness. In this context, the loss of function of photoreceptor-specific genes causes a variety of clinically and aetiologically distinct syndromes – each of them belonging to the group of rare diseases. With a prevalence of 1 in 2500, however, inherited retinal diseases are clinically significant and important – especially since these diseases lead to restrictions of a patientʼs fitness for work and overall quality of life. More than 250 genetic mutations causing the various types of inherited retinal dystrophies have been identified by now (https://sph.uth.tmc.edu/Retnet). In recent years, preclinical research on suitable animal models has yielded important progress in the understanding of the mutations underlying the pathological and molecular biological processes of these diseases. These findings have led to the development of novel and innovative therapeutic strategies for the treatment of inherited retinal dysfunctions, which are still incurable. Meanwhile, many of the successful preclinical studies have led to translational research projects aiming to find treatment options for human patients. However, some preliminary results of these human translational studies indicate the need to optimise and refine the underlying therapeutic concepts.

 
  • Literatur

  • 1 Ali RR, Reichel MB, Thrasher AJ. et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591-594
  • 2 Allocca M, Mussolino C, Garcia-Hoyos M. et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372-11380
  • 3 Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48: 353-359
  • 4 Bainbridge JW, Mistry A, Schlichtenbrede FC. et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Ther 2003; 10: 1336-1344
  • 5 Buch PK, Bainbridge JW, Ali RR. AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Ther 2008; 15: 849-857
  • 6 Pang JJ, Lauramore A, Deng WT. et al. Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vision Res 2008; 48: 377-385
  • 7 Puppo A, Cesi G, Marrocco E. et al. Retinal transduction profiles by high-capacity viral vectors. Gene Ther 2014; 21: 855-865
  • 8 Petrs-Silva H, Dinculescu A, Li Q. et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463-471
  • 9 Allocca M, Doria M, Petrillo M. et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955-1964
  • 10 Chen J, Tucker CL, Woodford B. et al. The human blue opsin promoter directs transgene expression in short-wave cones and bipolar cells in the mouse retina. Proc Natl Acad Sci U S A 1994; 91: 2611-2615
  • 11 Yang GS, Schmidt M, Yan Z. et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651-7660
  • 12 Glushakova LG, Timmers AM, Pang J. et al. Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors. Invest Ophthalmol Vis Sci 2006; 47: 3505-3513
  • 13 Komáromy AM, Alexander JJ, Cooper AE. et al. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther 2008; 15: 1049-1055 Erratum in: Gene Ther 2008; 15: 1073. Glushakova, L G [added]. Gene Ther 2011; 18: 1179
  • 14 Lebherz C, Maguire A, Tang W. et al. Novel AAV serotypes for improved ocular gene transfer. J Gene Med 2008; 10: 375-382
  • 15 Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther 2008; 15: 817-822
  • 16 Acland GM, Aguirre GD, Ray J. et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92-95
  • 17 Ali RR, Sarra GM, Stephens C. et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306-310
  • 18 Bainbridge JW, Smith AJ, Barker SS. et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239
  • 19 Cideciyan AV, Aleman TS, Boye SL. et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 2008; 105: 15112-15117
  • 20 Hauswirth WW, Aleman TS, Kaushal S. et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979-990
  • 21 Jacobson SG, Cideciyan AV, Ratnakaram R. et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9-24
  • 22 Maguire AM, High KA, Auricchio A. et al. Age-dependent effects of RPE65 gene therapy for Leberʼs congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597-1605 Erratum in: Lancet 2010; 375: 30
  • 23 Simonelli F, Maguire AM, Testa F. et al. Gene therapy for Leberʼs congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643-650
  • 24 Schimmer J, Breazzano S. Investor outlook: significance of the positive LCA2 gene therapy phase III results. Hum Gene Ther Clin Dev 2015; 26: 208-210
  • 25 Mühlfriedel R, Michalakis S, Garrido MG. et al. Optimized technique for subretinal injections in mice. Methods Mol Biol 2013; 935: 343-349
  • 26 Timmers AM, Zhang H, Squitieri A. et al. Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 2001; 7: 131-137
  • 27 Johnson CJ, Berglin L, Chrenek MA. et al. Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 2008; 14: 2211-2226
  • 28 Busskamp V, Duebel J, Balya D. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413-417
  • 29 Price J, Turner D, Cepko C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 1987; 84: 156-160
  • 30 Schlichtenbrede FC, da Cruz L, Stephens C. et al. Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 2003; 5: 757-764
  • 31 Liang FQ, Anand V, Maguire AM. et al. Intraocular delivery of recombinant virus. Methods Mol Med 2001; 47: 125-139
  • 32 Seeliger MW, Beck SC, Pereyra-Muñoz N. et al. In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 2005; 45: 3512-3519
  • 33 Huber G, Beck SC, Grimm C. et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009; 50: 5888-5895
  • 34 Fischer MD, Huber G, Beck SC. et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 2009; 4: e7507
  • 35 Marmor MF, Holder GE, Seeliger MW. et al. Standard for clinical electroretinography (2004 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 2004; 108: 107-114
  • 36 Scholl HP, Zrenner E. Electrophysiology in the investigation of acquired retinal disorders. Surv Ophthalmol 2000; 45: 29-47
  • 37 Dalke C, Löster J, Fuchs H. et al. Electroretinography as a screening method for mutations causing retinal dysfunction in mice. Invest Ophthalmol Vis Sci 2004; 45: 601-609
  • 38 Tanimoto N, Muehlfriedel RL, Fischer MD. et al. Vision tests in the mouse: Functional phenotyping with electroretinography. Front Biosci (Landmark Ed) 2009; 14: 2730-2737
  • 39 Douglas RM, Alam NM, Silver BD. et al. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 2005; 22: 677-684
  • 40 Umino Y, Solessio E, Barlow RB. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J Neurosci 2008; 28: 189-198
  • 41 Kohl S, Marx T, Giddings I. et al. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 1998; 19: 257-259
  • 42 Sundin OH, Yang JM, Li Y. et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet 2000; 25: 289-293
  • 43 Winick JD, Blundell ML, Galke BL. et al. Homozygosity mapping of the Achromatopsia locus in the Pingelapese. Am J Hum Genet 1999; 64: 1679-1685
  • 44 Milunsky A, Huang XL, Milunsky J. et al. A locus for autosomal recessive achromatopsia on human chromosome 8q. Clin Genet 1999; 56: 82-85
  • 45 Kohl S, Varsanyi B, Antunes GA. et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 2005; 13: 302-308
  • 46 Michaelides M, Aligianis IA, Ainsworth JR. et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 2004; 45: 1975-1982
  • 47 Thiadens AA, Slingerland NW, Roosing S. et al. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology 2009; 116: 1984-1989.e1
  • 48 Wissinger B, Gamer D, Jägle H. et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 2001; 69: 722-737
  • 49 Kohl S, Kitiratschky V, Papke M. et al. Genes and mutations in autosomal dominant cone and cone-rod dystrophy. Adv Exp Med Biol 2012; 723: 337-343
  • 50 Johnson S, Michaelides M, Aligianis IA. et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet 2004; 41: e20
  • 51 Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002; 82: 769-824
  • 52 Zhong H, Molday LL, Molday RS. et al. The heteromeric cyclic nucleotide-gated channel adopts a 3A: 1B stoichiometry. Nature 2002; 420: 193-198
  • 53 Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 1996; 19: 235-263
  • 54 Hofmann F, Biel M, Kaupp UB. International Union of Pharmacology. XLII. Compendium of voltage-gated ion channels: cyclic nucleotide-modulated channels. Pharmacol Rev 2003; 55: 587-589
  • 55 Hofmann F, Biel M, Kaupp UB. International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 2005; 57: 455-462
  • 56 Michalakis S, Geiger H, Haverkamp S. et al. Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. Invest Ophthalmol Vis Sci 2005; 46: 1516-1524
  • 57 Thiadens AA, Phan TM, Zekveld-Vroon RC. et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology 2012; 119: 819-826
  • 58 Francois J. Heredity in Ophthalmology. St. Louis: CV Mosby; 1961
  • 59 Sharpe LT, Stockman A, Jägle H. et al. Opsin genes, cone photopigments and colour blindness. In: Gegenfurtner KR, Sharpe LT. eds. Color Vision: From Genes to Perception. Cambridge, UK: Cambridge University Press; 1999
  • 60 Michalakis S, Mühlfriedel R, Tanimoto N. et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18: 2057-2063
  • 61 Biel M, Seeliger M, Pfeifer A. et al. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A 1999; 96: 7553-7557
  • 62 Zobor D, Zrenner E. [Retinitis pigmentosa – a review. Pathogenesis, guidelines for diagnostics and perspectives]. Ophthalmologe 2012; 109: 501-514
  • 63 Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006; 1: 40
  • 64 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
  • 65 Ferrari S, Di Iorio E, Barbaro V. et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 2011; 12: 238-249
  • 66 Audo I, Manes G, Mohand-Saïd S. et al. Spectrum of rhodopsin mutations in French autosomal dominant rod-cone dystrophy patients. Invest Ophthalmol Vis Sci 2010; 51: 3687-3700
  • 67 Dryja TP, Hahn LB, Cowley GS. et al. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 1991; 88: 9370-9374
  • 68 Pan Z, Lu T, Zhang X. et al. Identification of two mutations of the RHO gene in two Chinese families with retinitis pigmentosa: correlation between genotype and phenotype. Mol Vis 2012; 18: 3013-3020
  • 69 Schuster A, Weisschuh N, Jägle H. et al. Novel rhodopsin mutations and genotype-phenotype correlation in patients with autosomal dominant retinitis pigmentosa. Br J Ophthalmol 2005; 89: 1258-1264
  • 70 Dryja TP, Rucinski DE, Chen SH. et al. Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999; 40: 1859-1865
  • 71 McLaughlin ME, Ehrhart TL, Berson EL. et al. Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci U S A 1995; 92: 3249-3253
  • 72 Nakazawa M, Wada Y, Tamai M. Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 1998; 116: 498-501
  • 73 Bareil C, Hamel CP, Delague V. et al. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 2001; 108: 328-334
  • 74 Kondo H, Qin M, Mizota A. et al. A homozygosity-based search for mutations in patients with autosomal recessive retinitis pigmentosa, using microsatellite markers. Invest Ophthalmol Vis Sci 2004; 45: 4433-4439
  • 75 Sohocki MM, Daiger SP, Bowne SJ. et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001; 17: 42-51
  • 76 Rattner A, Sun H, Nathans J. Molecular genetics of human retinal disease. Annu Rev Genet 1999; 33: 89-131
  • 77 Simpson DA, Clark GR, Alexander S. et al. Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa. J Med Genet 2011; 48: 145-151
  • 78 Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 2007; 125: 151-158
  • 79 Sahel J, Bonnel S, Mrejen S. et al. Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 2010; 47: 160-167
  • 80 Hüttl S, Michalakis S, Seeliger M. et al. Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci 2005; 25: 130-138
  • 81 Koch S, Sothilingam V, Garcia Garrido M. et al. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 2012; 21: 4486-4496
  • 82 Maguire AM, Simonelli F, Pierce EA. et al. Safety and efficacy of gene transfer for Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2240-2248
  • 83 Amado D, Mingozzi F, Hui D. et al. Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2010; 2: 21ra16
  • 84 Bainbridge JW, Smith AJ, Barker SS. et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239