Klinische Neurophysiologie 2017; 48(02): 63-72
DOI: 10.1055/s-0043-103477
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Small-Fiber-Neuropathien

Claudia Sommer
,
Nurcan Üçeyler
Further Information

Publication History

Publication Date:
30 June 2017 (online)

Zusammenfassung

Das klinische Bild der Small-Fiber-Neuropathie, einer Erkrankung der dünn bemarkten A-delta- und unbemarkten C-Fasern, ist geprägt durch brennende akrale Schmerzen. Wichtig ist die Suche nach der Krankheitsursache, die vielfältig sein kann, am häufigsten jedoch Diabetes mellitus. Die klinische Verdachtsdiagnose wird untermauert durch spezielle Untersuchungen, die in diesem Beitrag ebenso wie die therapeutischen Möglichkeiten vorgestellt werden.

Abstract

Small fiber neuropathies (SFN) comprise a clinical syndrome typically associated with acral burning pain, where the pathophysiological processes affect the thinly myelinated A-delta and the unmyelinated C nerve fibers. Neurological examination thus reveals merely thermal sensory deficits. Nerve conduction studies in SFN are normal to marginally abnormal. To underpin suspicion of SFN, special psychophysical and neurophysiological examinations or a skin punch biopsy are needed. The search for the etiology of SFN is crucial and most frequently reveals diabetes mellitus or impaired glucose tolerance. Mutations in genes encoding voltage-gated sodium channels and other genetic alterations are being increasingly reported. Treatment depends on the underlying disease and follows the guidelines on the treatment of neuropathic pain.

 
  • Literatur

  • 1 Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve 1992; 15: 661-665
  • 2 Sommer C, Richter H, Rogausch JP. et al. A modified score to identify and discriminate neuropathic pain: a study on the German version of the Neuropathic Pain Symptom Inventory (NPSI). BMC Neurol 2011; 11: 104
  • 3 Bouhassira D, Attal N, Fermanian J. et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain 2004; 108: 248-257
  • 4 Lacomis D. Small-fiber neuropathy. Muscle Nerve 2002; 26: 173-188
  • 5 Devigili G, Tugnoli V, Penza P. et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008; 131: 1912-1925
  • 6 Rolke R, Baron R, Maier C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006; 123: 231-243
  • 7 Magerl W, Krumova EK, Baron R. et al. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 2010; 151: 598-605
  • 8 Kennedy WR, Wendelschafer-Crabb G, Polydefkis M. et al. Pathology and quantitation of cutaneous nerves. In: Dyck PJ, Thomas PK. (eds.) Peripheral Neuropathy. Philadelphia: Elsevier Saunders; 2005: 869-896
  • 9 McArthur JC, Stocks EA, Hauer P. et al. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol 1998; 55: 1513-1520
  • 10 Tavakoli M, Marshall A, Banka S. et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot-Marie-Tooth disease type 1A patients. Muscle Nerve 2012; 46: 698-704
  • 11 Ferdousi M, Azmi S, Petropoulos IN. et al. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy. PLoS One 2015; 10: e0139394
  • 12 Asghar O, Petropoulos IN, Alam U. et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014; 37: 2643-2646
  • 13 Chen X, Graham J, Dabbah MA. et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015; 38: 1138-1144
  • 14 Agostino R, Cruccu G, Romaniello A. et al. Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. Clin Neurophysiol 2000; 111: 270-276
  • 15 Jamal GA, Hansen S, Weir AI. et al. Cerebral cortical potentials to pure non-painful temperature stimulation: an objective technique for the assessment of small fibre pathway in man. J Neurol Neurosurg Psychiatry 1989; 52: 99-105
  • 16 Kaube H, Katsarava Z, Kaufer T. et al. A new method to increase nociception specificity of the human blink reflex. Clin Neurophysiol 2000; 111: 413-416
  • 17 Granovsky Y, Anand P, Nakae A. et al. Normative data for Adelta contact heat evoked potentials in adult population: a multicenter study. Pain 2016; 157: 1156-1163
  • 18 Lagerburg V, Bakkers M, Bouwhuis A. et al. Contact heat evoked potentials: normal values and use in small-fiber neuropathy. Muscle Nerve 2015; 51: 743-749
  • 19 Ochoa J, Torebjork HE, Culp WJ. et al. Abnormal spontaneous activity in single sensory nerve fibers in humans. Muscle Nerve 1982; 5: S74-S77
  • 20 Sumner CJ, Sheth S, Griffin JW. et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003; 60: 108-111
  • 21 Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001; 24: 1448-1453
  • 22 Hoitsma E, Marziniak M, Faber CG. et al. Small fibre neuropathy in sarcoidosis. Lancet 2002; 359: 2085-2086
  • 23 Üçeyler N, Sommer C. Fabry disease: Diagnosis and treatment. Schmerz 2012; 26: 609-619
  • 24 Persson AK, Hoeijmakers JG, Estacion M. et al. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy. Trends Mol Med 2016; 22: 377-390
  • 25 Scheytt S, Riediger N, Braunsdorf S. et al. Increased gene expression of growth associated protein-43 in skin of patients with early-stage peripheral neuropathies. J Neurol Sci 2015; 355: 131-137
  • 26 Gorson KC, Herrmann DN, Thiagarajan R. et al. Non-length dependent small fibre neuropathy/ganglionopathy. J Neurol Neurosurg Psychiatry 2008; 79: 163-169
  • 27 Üçeyler N, Kafke W, Riediger N. et al. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 2010; 74: 1806-1813
  • 28 Orstavik K, Jorum E. Microneurographic findings of relevance to pain in patients with erythromelalgia and patients with diabetic neuropathy. Neurosci Lett 2010; 470: 180-184
  • 29 Harrer JU, Uceyler N. Doppler K et al. Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain 2014; 155: 2199-2203
  • 30 Reimann F, Cox JJ, Belfer I. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci USA 2010; 107: 5148-5153
  • 31 Valdes AM, Arden NK, Vaughn FL. et al. Role of the Nav1.7 R1150W amino acid change in susceptibility to symptomatic knee osteoarthritis and multiple regional pain. Arthritis Care Res (Hoboken) 2011; 63: 440-444
  • 32 Baron R. Pharmakologische nicht-interventionelle Therapie chronischer neuropathischer Schmerzen. In: Diener HC, Weimar C. (Hrsg.) Leitlinien für Diagnostik und Therapie in der Neurologie. 5. Aufl. Stuttgart: Thieme; 2012: 771-783
  • 33 Finnerup NB, Attal N, Haroutounian S. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14: 162-173
  • 34 Dabby R, Gilad R, Sadeh M. et al. Acute steroid responsive small-fiber sensory neuropathy: a new entity?. J Peripher Nerv Syst 2006; 11: 47-52
  • 35 Ho TW, Backonja M, Ma J. et al. Efficient assessment of neuropathic pain drugs in patients with small fiber sensory neuropathies. Pain 2009; 141: 19-24
  • 36 Lefaucheur JP, Creange A. Neurophysiological testing correlates with clinical examination according to fibre type involvement and severity in sensory neuropathy. J Neurol Neurosurg Psychiatry 2004; 75: 417-422
  • 37 Khoshnoodi MA, Truelove S, Burakgazi A. et al. Longitudinal Assessment of Small Fiber Neuropathy: Evidence of a Non-Length-Dependent Distal Axonopathy. JAMA Neurol 2016; 73: 684-690