CC BY-NC-ND 4.0 · Planta Medica International Open 2017; 4(01): e17-e23
DOI: 10.1055/s-0043-105273
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Cocos nucifera Oil Decreases Edema and Mechanical Hypernociception Induced by Bothrops jararacussu Venom in Mice

Álvaro S. Lisboa-Neto
1   Pós-Graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
,
Anita E.A.S. Ribeiro
2   Pós-Graduação em Recursos Naturais do Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
,
Eliane F. Feitosa
3   Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
,
Carlos W.S. Wanderley
4   Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Ana Paula de Oliveira
2   Pós-Graduação em Recursos Naturais do Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
,
Jackson R.G.S. Almeida
2   Pós-Graduação em Recursos Naturais do Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
,
Raimundo C. Palheta-Junior
1   Pós-Graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
2   Pós-Graduação em Recursos Naturais do Semiárido, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
3   Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
› Author Affiliations
Further Information

Publication History

received 04 October 2016
revised 08 February 2017

accepted 28 February 2017

Publication Date:
23 May 2017 (online)

Abstract

Bothropic venoms cause intense local damage, pain, edema, and myonecrosis. Cocos nucifera is the naturally most widespread fruit plant on Earth, and both the fruit and the plant have been used in folk medicine for the treatment of several inflammatory disorders. We evaluated the anti-inflammatory and analgesic effects of virgin coconut oil that was obtained from C. nucifera on paw lesions that were induced by venom from the Bothrops jararacussu snake in mice. Nuclear magnetic resonance spectroscopy was used to determine the chemical profile of virgin coconut oil. The analysis of the main components showed that saturated and unsaturated fatty acids were prominent components of the oil. Virgin coconut oil at doses of 100, 200, and 400 mg reduced local edema that was induced by B. jararacussu venom. The 200-mg dose of virgin coconut oil prevented edema that was induced by histamine, serotonin, and bradykinin. However, virgin coconut oil did not prevent edema that was induced by substance P or prostaglandin E2. Virgin coconut oil also reduced peritoneal leukocyte infiltration that was induced by carrageenan and also decreased B. jararacussu venom-induced mechanical hypernociception of the paw. Virgin coconut oil exerted an anti-inflammatory effect on paw injury that was induced by B. jararacussu venom in mice, most likely by inhibiting leukocyte migration and reducing the action of the same inflammatory agents. The analgesic activity of virgin coconut oil appears to depend on opioid receptors.

 
  • References

  • 1 da Silva CJ, Jorge MT, Ribeiro LA. Epidemiology of snakebite in a central region of Brazil. Toxicon 2003; 41: 251-255
  • 2 Galvão Nascimento N, Sampaio MC, Amaral Olivo R, Teixeira C. Contribution of mast cells to the oedema induced by Bothrops moojeni snake venom and a pharmacological assessment of the inflammatory mediators involved. Toxicon 2010; 55: 343-352
  • 3 Landucci EC, Castro RC, Pereira MF, Cintra AC, Giglio JR, Marangoni S, Oliveira B, Cirino G, Antunes E, De Nucci G. Mast cell degranulation induced by two phospholipase A2 homologues: Dissociation between enzymatic and biological activities. Eur J Pharmacol 1998; 343: 257-263
  • 4 Gonçalves LR, Mariano M. Local haemorrhage induced by Bothrops jararaca venom: Relationship to neurogenic inflammation. Mediators Inflamm 2000; 9: 101-107
  • 5 Guimarães AQ, Cruz-Höfling MA, Ferreira de Araújo PM, Bon C, Lôbo de Araújo A. Pharmacological and histopathological characterization of Bothrops lanceolatus (Fer de lance) venom-induced edema. Inflamm Res 2004; 53: 284-291
  • 6 Rioli V, Prezoto BC, Konno K, Melo RL, Klitzke CF, Ferro ES, Ferreira-Lopes M, Camargo AC, Portaro FC. A novel bradykinin potentiating peptide isolated from Bothrops jararacussu venom using catalytically inactive oligopeptidase EP24.15. FEBS J 2008; 275: 2442-2454
  • 7 Wanderley CWS, Silva CM, Wong DV, Ximenes RM, Morelo DF, Cosker F, Aragão KS, Fernandes C, Palheta-Júnior RC, Havt A, Brito GA, Cunha FQ, Ribeiro RA, Lima-Júnior RC. Bothrops jararacussu snake venom-induces a local inflammatory response in a prostanoid- and neutrophil-dependent manner. Toxicon 2014; 90: 134-147
  • 8 da Silva IM, Tavares AM. Comparative evaluation of adverse effects in the use of powder trivalent antivenom and liquid antivenoms in Bothrops snake bites. Rev Soc Bras Med Trop 2012; 45: 523-525
  • 9 Armentano RA, Schaer M. Overview and controversies in the medical management of pit viper envenomation in the dog. J Vet Emerg Crit Care 2011; 21: 461-470
  • 10 Simon JP, Prince SE. Natural remedies for non-steroidal anti-inflammatory drug-induced toxicity. J Appl Toxicol 2017; 37: 71-83
  • 11 da Silva GA, Domingos TF, Fonseca RR, Sanchez EF, Teixeira VL, Fuly AL. The red seaweed Plocamium brasiliense shows anti-snake venom toxic effects. J Venom Anim Toxins Incl Trop Dis 2015; 21: 2
  • 12 Magalhães A, Santos GB, Verdam MC, Fraporti L, Malheiro A, Lima ES, Dos-Santos MC. Inhibition of the inflammatory and coagulant action of Bothrops atrox venom by the plant species Marsypianthes chamaedrys. J Ethnopharmacol 2011; 134: 82-88
  • 13 Félix-Silva J, Souza T, Menezes YA, Cabral B, Câmara RB, Silva-Junior AA, Rocha HA, Rebecchi IM, Zucolotto SM, Fernandes-Pedrosa MF. Aqueous leaf extract of Jatropha gossypiifolia L. (Euphorbiaceae) inhibits enzymatic and biological actions of Bothrops jararaca snake venom. PLoS One 2014; 9: e104952
  • 14 Lima EBC, Sousa CNS, Meneses LN, Ximenes NC, Santos Júnior MA, Vasconcelos GS, Lima NBC, Patrocínio MCA, Macedo D, Vasconcelos SMM. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res 2015; 48: 953-964
  • 15 DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 2011; 4: 241-247
  • 16 Zakaria ZA, Reezal I, Mat Jais AM, Somchit MN, Sulaiman MR, Marmin AHI, Sidek H, Husin SH, Rahim MHA, Abdul Rahman L. The anti-inflammatory, anti-pyretic and wound healing activities of Cocos nucifera (MATAG types) fresh juice and kernel extracts in experimental animals. J. Pharmacol Toxicol 2006; 1: 516-526
  • 17 Rinaldi S, Silva DO, Bello F, Alviano CS, Alviano DS, Matheus ME, Fernandes PD. Characterization of the antinociceptive and anti-inflammatory activities from Cocos nucifera L. (Palmae). J Ethnopharmacol 2009; 122: 541-546
  • 18 Intahphuak S, Khonsung P, Panthong A. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharm Biol 2010; 48: 151-157
  • 19 Zakaria ZA, Somchit MN, Mat Jais AM, Teh LK, Salleh MZ, Long K. In vivo antinociceptive and anti-inflammatory activities of dried and fermented processed virgin coconut oil. Med Princ Pract 2011; 20: 231-236
  • 20 Naskar S, Mazumder UK, Pramanik G, Saha P, Haldar PK, Gupta M. Evaluation of antinociceptive and anti-inflammatory activity of hydromethanol extract of Cocos nucifera L. Inflammopharmacology 2013; 21: 31-35
  • 21 Silva RR, Oiveira e Silva D, Fontes HR, Alviano CS, Fernandes PD, Alviano DS. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typical. BMC Complement Altern Med 2013; 13: 107
  • 22 Nneli RO, Woyike OA. Antiulcerogenic effects of coconut (Cocos nucifera) extract in rats. Phytother Res 2008; 22: 970-972
  • 23 Chioma AA, Obidoa O. Anti-inflammatory and anti-ulcerogenic effect of ethanol extract of coconut (Cocos nucifera) on experimental rats. Afr J Food Agriculture Nutr Dev 2010; 10: 10-16
  • 24 Chioma AA, Obidoa O, Fredrick NOC, Parker EJ. Anti-ulcerogenic and membrane stabilization effect of ethanol extract of coconut (Cocos nucifera). Res J Pharmacognosy Phytochem 2010; 2: 85-88
  • 25 Gunstone FD. Information on the composition of fats from their high-resolution 13C nuclear magnetic resonance spectra. J Am Oil Chem Soc 1993; 70: 361-366
  • 26 Zakaria ZA, Ahmad Z, Somchit MN, Arifah AK, Khairi HM, Sulaiman MR, Teh LK, Salleh MZ, Long K. Antihypercholesterolemia property and fatty acid composition of MARDI-produced virgin coconut oils. Afr J Pharm Pharmacol 2010; 4: 636-644
  • 27 Barbosa AM, do Amaral RO, Teixeira CF, Hyslop S, Cogo JC. Pharmacological characterization of mouse hind paw oedema induced by Bothrops insularis (jararaca ilhoa) snake venom. Toxicon 2003; 5: 515-523
  • 28 Patrão-Neto FC, Tomaz MA, Strauch MA, Monteiro-Machado M, Rocha Jr JR, Borges PA, Calil-Elias S, Melo PA. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon 2013; 69: 55-64
  • 29 Stochla K, Maśliński S. Carrageenan-induced oedema in the rat paw: histamine participation. Agents Actions 1982; 12: 201-202
  • 30 Kim S, Liu M, Simchon S, Dörscher-Kim JE. Effects of selected inflammatory mediators on blood flow and vascular permeability in the dental pulp. Proc Finn Dent Soc 1992; 88 (Suppl. 01) 387-392
  • 31 Rasanen T. Effects of dexamethasone, prednisolone and cortisol on the mast cells and tissue eosinophils in rat gastric mucosa. Acta Endocrinol (Copenh) 1962; 41: 432-436
  • 32 Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121: 1008-1015
  • 33 Damasceno SR, Oliveira FR, Carvalho NS, Brito CF, Silva IS, Sousa FB, Silva RO, Sousa DP, Barbosa AL, Freitas RM, Medeiros JV. Carvacryl acetate, a derivative of carvacrol, reduces nociceptive and inflammatory response in mice. Life Sci 2014; 94: 58-66
  • 34 Pierce PA, Xie GX, Peroutka SJ, Green PG, Levine JD. 5-hydroxytryptamine-induced synovial plasma extravasation is mediated via 5-hydroxytryptamine 2A receptors on sympathetic efferent terminals. J Pharmacol Exp Ther 1995; 275: 502-508
  • 35 Ferreira SH. History of the development of inhibitors of angiotensin I conversion. Drugs 1985; 30 (Suppl. 01) 1-5
  • 36 Chacur M, Picolo G, Teixeira CF, Cury Y. Bradykinin is involved in hyperalgesia induced by Bothrops jararaca venom. Toxicon 2002; 40: 1047-1051
  • 37 Martinov T, Mack M, Sykes A, Chatterjea D. Measuring changes in tactile sensitivity in the hind paw of mice using an electronic von Frey apparatus. J Vis Exp 2013; 82: e51212
  • 38 Fereidoni M, Ahmadiani A, Semnanian S, Javan M. An accurate and simple method for measurement of paw edema. J Pharmacol Toxicol Methods 2000; 43: 11-14
  • 39 DeSimone JM, Meguid MM, Kurzer M, Westervelt J. Indomethacin decreases carrageenan-induced peritoneal adhesions. Surgery 1988; 104: 788-795
  • 40 Cunha TM, Verri Jr WA, Vivancos GG, Moreira IF, Reis S, Parada CA, Cunha FQ, Ferreira SH. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 2004; 37: 401-407