Subscribe to RSS
DOI: 10.1055/s-0043-106050
Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors
Publication History
received 09 February 2017
revised 03 March 2017
accepted 06 March 2017
Publication Date:
10 April 2017 (online)
Abstract
Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glucose absorption, gluconeogenesis, biosynthesis and mobilization of glycogen, glucose consumption in all tissues and glomerular filtration, and reabsorption of glucose in the kidneys. Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the family of facilitative glucose transporters (GLUTs) or to the family of sodium glucose cotransporters (SGLTs). The intestinal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the kidney SGLT2 and SGLT1 are responsible for reabsorption of filtered glucose from the primary urine, and GLUT2 and GLUT1 enable the transport of glucose from epithelial cells back into the blood stream.
The flavonoid phlorizin was isolated from the bark of apple trees and shown to cause glucosuria. Phlorizin is an inhibitor of SGLT1 and SGLT2. With phlorizin as lead compound, specific inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of type 2 diabetes. Inhibition of SGLT2 eliminates excess glucose via the urine. In recent times, the dual SGLT1/SGLT2 inhibitory activity of phlorizin has served as a model for the development and testing of new drugs exhibiting both activities.
Besides phlorizin, also some other flavonoids and especially flavonoid enriched plant extracts have been investigated for their potency to reduce postprandial blood glucose levels which can be helpful in the prevention and supplementary treatment especially of type 2 diabetes.
-
References
- 1 Petersen C. Analyse des Phloridzins. Ann Acad Sci Fr 1835; 15: 178
- 2 Zemplen G, Bognar R. Synthese des natürlichen Phlorrhizins. Chem Ber 1942; 75: 1040
- 3 De Koninck L. Observations sur les proprieties febrifuges de las phloridzine. Bull Soc Med Gand 1836; 1: 75-110
- 4 Von Mering J. Über künstlichen Diabetes. Centralbl Med Wiss 1886; 22: 531
- 5 Stiles PG, Lusk G. On the action of phlorizin. Am J Physiol 1903; 10: 61-79
- 6 Chassis H, Jolliffe N, Smith H. The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine, and urea by man. J Clin Invest 1933; 12: 1083-1089
- 7 Crane RK, Miller D, Bihler I. The Restrictions on possible Mechanisms of intestinal active Transport of Sugars. In: Kleinzeller A, Kotyk A. eds. Intestinal Absorption. London: Academic Press; 1961: 439-449
- 8 Alvarado FC, Crane RK. Phlorizine as a competitive inhibitor of the active transport of sugars by hamster small intestine in vitro . Biochim Biophys Acta 1962; 56: 170-172
- 9 Vick HD, Deidrich DF. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Physiol 1973; 224: 552-557
- 10 Amsler K, Cook JS. Development of a Na+-dependent hexose transport in a cultured line of porcine kidney cells. Am J Physiol 1982; 242: C94-C101
- 11 Lee WS, Wells RG, Hediger MA. The high affinity Na/glucose cotransporter: reevaluation and distribution of expression. J Biol Chem 1994; 268: 12032-12039
- 12 Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev 2005; 21: 31-38
- 13 Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 1999; 48: 1794-1800
- 14 Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, Komatsu Y, Fujikura H, Isaji M. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007; 320: 323-330
- 15 Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H, Isaji M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 2008; 327: 268-276
- 16 Link JT, Sorensen BK. A method for preparing C-glycosides related to phlorizin. Tetrahedron Lett 2000; 41: 9213-9217
- 17 Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 2008; 51: 1145-1149
- 18 Nomura S, Sasamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, Yamamoto Y, Ueta K, Kimata H, Nakayama K, Tsuda-Tsukimoto M. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem 2010; 53: 6355-6360
- 19 Grampler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, Bakker RA, Mark M, Klein T, Eickelmann P. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 2012; 14: 83-90
- 20 Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport. Diabetes Care 2015; 38: 2344-2353
- 21 Lapuerta P, Zambrowicz B, Strumph P, Sands A. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab Vasc Dis Res 2015; 12: 101-110
- 22 Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 2015; 66: 255-270
- 23 Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 2016; 20: 1109-1125
- 24 Madaan T, Akhtar M, Abul Najmi SK. Sodium glucose cotransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur J Pharm Sci 2016; 93: 244-252
- 25 Koepsell H. The Na+-D-Glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017; 170: 148-165
- 26 Cefalu WT. ed. Standards of Medical Care in Diabetes – 2016. Diabetes Care 2016; 39: S1-S112
- 27 Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes 2016; 7: 354-395
- 28 World Health Organization. Global Report on Diabetes 2016. Geneva: World Health Organization; 2016
- 29 Gururaj Setty S, Crasto W, Jarvis J, Khunti K, Davies MJ. New insulins and newer insulin regimens: a review of their role in improving glycaemic control in patients with diabetes. Postgrad Med J 2016; 92: 152-164
- 30 Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, Marinpopoulos SS, Puhan MA, Ranasinghe P, Block L, Nocholson WK, Hutfless S, Bass EB, Bolen S. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med 2011; 154: 602-613
- 31 Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 1987; 330: 379-381
- 32 Hediger MA, Turk E, Wright EM. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci 1989; 86: 5748-5752
- 33 Turk E, Kerner CJ, Lostao MP, Wright EM. Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem 1996; 271: 1925-1934
- 34 Turk E, Wright EM. Membrane topology motifs in the SGLT (1996) cotransporter family. J Membr Biol 1997; 159: 1-20
- 35 Chen XZ, Coady MJ, Jackson F, Berteloot A, Lapointe JY. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Biophys J 1995; 69: 2405-2414
- 36 Mackenzie B, Loo DD, Wright EM. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 1998; 162: 101-106
- 37 Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733-794
- 38 World Health Organization. The treatment of diarrhea, a manual for physicians and other senior health workers. Geneva: World Health Organization; 2005
- 39 Loo DD, Wright EM, Zeuthen T. Water pumps. J Physiol 2002; 542: 53-60
- 40 Gagnon MP, Bissonnette P, Deslandes LM, Wallendorff B, Lapointe JY. Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Biophys J 2004; 86: 125-133
- 41 Erokhova L, Horner A, Ollinger N, Siligan C, Pohl P. The sodium glucose cotransporter SGLT1 is an extremely efficient facilitator of passive water transport. J Biol Chem 2016; 291: 9712-9720
- 42 Preuss HG. Basics of renal anatomy and physiology. Clin Lab Med 1993; 13: 1-11
- 43 Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300: R1009-R1022
- 44 DeFronzo RA, Hompesch M, Kasichayanula S, Liu X, Hong Y, Pfister M, Morrow LA, Leslie BR, Boulton DW, Ching A, LaCreta FP, Griffen SC. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 2013; 36: 3169-3176
- 45 Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diab Vasc Dis Res 2015; 12: 78-89
- 46 Liu J, Lee TW, DeFronzo RA. Why do SGLT2 inhibitors inhibit only 30–50 % of renal glucose reabsorption in humans?. Diabetes 2012; 61: 2199-2204
- 47 Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, Broedl UC. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 2014; 37: 1815-1823
- 48 Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther 2014; 8: 1335-1380
- 49 Blevins T. Combination therapy for patients with uncontrolled type 2 diabetes mellitus: Adding empagliflozin to pioglitazone or pioglitazone plus metformin. Expert Opin Drug Saf 2015; 14: 789-793
- 50 DeFronzo RA, Lewin A, Patel S, Liu D, Kaste R, Woerle HJ, Broedl UC. Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin. Diabetes Care 2015; 38: 384-393
- 51 Kushner P. Benefits/risks of sodium-glucose co-transporter 2 inhibitor canagliflozin in women for the treatment of type 2 diabetes. Womenʼs Health (Lond) 2016; 12: 379-388
- 52 Nyirjesy P, Sobel JD, Fung A, Mayer C, Capuano G, Way K, Usiskin K. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. Curr Med Res Opin 2014; 30: 1109-1119
- 53 Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819-837
- 54 Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr 2015; 2: 23
- 55 Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J, Ruff D, Shadoan M, Banks P, Mseeh F, Rawlins DB, Goodwin NC, Mabon R, Harrison BA, Wilson A, Sands A, Powell DR. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012; 92: 158-169
- 56 Rosenstock J, Cefalu WT, Lapuerta P, Zambrowicz B, Ogbaa I, Banks P, Sands A. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care 2015; 38: 431-438
- 57 Sands AT, Zambrowicz BP, Rosenstock J, Lapuerta P, Bode BW, Garg SK, Buse JB, Banks P, Heptulla R, Rendell M, Cefalu WT, Strumph P. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 2015; 38: 1181-1188
- 58 Gosch C, Halbwirth H, Stich K. Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochem 2010; 71: 838-843
- 59 Hilt P, Schieber A, Yildirim C, Arnold G, Klaiber I, Conrad J, Carle R. Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. J Agric Food Chem 2003; 51: 2896-2899
- 60 Hvattum E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionization tandem mass spectrometry and diode-array detection. Rapid Commun Mass Spectrom 2002; 16: 655-662
- 61 Gosch C, Halbwirth H, Schneider B, Hölscher D, Stich K. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2′-O-glucoside (phloridzin). Plant Sci 2010; 178: 299-306
- 62 Schulze C, Bangert A, Kottra G, Geillinger KE, Schwanck B, Vollert H, Blaschek W, Daniel H. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Mol Nutr Food Res 2014; 57: 1795-1808
- 63 Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 2003; 65: 1199-1206
- 64 Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 2000; 468: 166-170
- 65 Schwank B, Behrendt M, Naim HY, Blaschek W. Deglycosylation of individual flavonoids and flavonoid containing plant extracts by purified human intestinal lactase-phlorizin hydrolase (LPH). Planta Med 2011; 77: PA22
- 66 Kwon O, Eck P, Chen S, Corpe CP, Lee J, Kruhlak M, Levine M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 2007; 21: 366-377
- 67 Johnston KL, Clifford MN, Morgan LM. Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J Sci Food Agric 2002; 82: 1800-1805
- 68 Shirosaki M, Koyama T, Yazawa K. Apple leaf extract as a potential candidate for suppressing postprandial elevation of the blood glucose level. J Nutr Sci Vitaminol 2012; 58: 63-67
- 69 Powell DR, Smith M, Greer J, Harris A. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 2013; 345: 250-259
- 70 Makarova E, Gornas P, Konrade I, Tirzite D, Cirule H, Pugajeva I, Seglina D, Dambrova M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin im healthy volunteers: a preliminary study. J Sci Food Agric 2015; 95: 560-568
- 71 Sato S, Takeo J, Aoyama C, Kawahara H. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens . Bioorg Med Chem 2007; 15: 3445-3449
- 72 Yang J, Yang X, Wang C, Lin Q, Mei Z, Zhao P. Sodium-glucose-linked transporter 2 inhibitors from Sophora flavescens . Med Chem Res 2015; 24: 1265-1271
- 73 Goto T, Horita M, Nagai H, Nagatomo S, Nishida N, Matsuura Y, Nagaoka S. Tirliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Mol Nutr Food Res 2012; 56: 435-445
- 74 Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81: 230S-242S
- 75 Walgren RA, Lin JT, Kinne RK, Walle T. Cellular uptake of dietary flavonoid quercetin 4′-β-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther 2000; 294: 837-843
- 76 Wolffram S, Blöck M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr 2002; 132: 630-635
- 77 Kottra G, Daniel H. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J Pharmacol Exp Ther 2007; 322: 829-835
- 78 Ader P, Blöck M, Pietzsch S, Wolffram S. Interaction of quercetin glucosides with the intestinal sodium/glucose co-transporter (SGLT-1). Cancer Lett 2001; 162: 175-180
- 79 Cermak R, Landgraf S, Wolffram S. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. Br J Nutr 2004; 91: 849-855
- 80 Schulze C, Bangert A, Schwanck B, Vollert H, Blaschek W, Daniel H. Extracts and flavonoids from onion inhibit the intestinal sodium-coupled glucose transporter 1 (SGLT1) in vitro but show no anti-hyperglycaemic effects in vivo in normoglycaemic mice and human volunteers. J Funct Foods 2015; 18: 117-128
- 81 Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F, Nazaret C, Le Gall M, Bado A. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. J Nutr Biochem 2014; 25: 557-564
- 82 Arai H, Hirasawa Y, Rahman A, Kusumawati I, Zaini NC, Sato S, Aoyama C, Takeo J, Morita H. Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter. Bioorg Med Chem 2010; 18: 2152-2158