Planta Med 2017; 83(12/13): 1076-1084
DOI: 10.1055/s-0043-107032
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Critical Evaluation of NIR and ATR-IR Spectroscopic Quantifications of Rosmarinic Acid in Rosmarini folium Supported by Quantum Chemical Calculations[*]

Christian G. Kirchler
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Austria
,
Cornelia K. Pezzei
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Austria
,
Krzysztof B. Beć
2   Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
,
Raphael Henn
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Austria
,
Mika Ishigaki
2   Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
,
Yukihiro Ozaki
2   Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
,
Christian W. Huck
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Austria
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 31. Januar 2017
revised 14. März 2017

accepted 21. März 2017

Publikationsdatum:
07. April 2017 (online)

Abstract

The present study evaluates the analytical performance of near infrared as well as attenuated total reflection infrared spectroscopy for the determination of the rosmarinic acid content in Rosmarini folium. Therefore, the recorded near infrared and attenuated total reflection infrared spectra of 42 milled Rosmarini folium samples were correlated with reference data (range: 1.138–2.199 rosmarinic acid %) obtained by HPLC analysis. Partial least squares regression models were established as a quantitative multivariate data analysis tool. Evaluation via full cross-validation and test set validation resulted in comparable performances for both techniques: near infrared [coefficient of determination: 0.90 (test set validation); standard error of cross-validation: 0.060 rosmarinic acid %; standard error of prediction: 0.058 rosmarinic acid %] and attenuated total reflection infrared [coefficient of determination: 0.91 (test set validation); standard error of cross-validation: 0.063 rosmarinic acid %; standard error of prediction: 0.060 rosmarinic acid %]. Furthermore, quantum chemical calculations were applied to obtain a theoretical infrared spectrum of rosmarinic acid. Good agreement to the spectrum of pure rosmarinic acid was achieved in the lower wavenumber region, whereas the higher wavenumber region showed less compliance. The knowledge of the vibrational modes of rosmarinic acid was used for the association with the high values of the regression coefficient plots of the established partial least squares regression models.

* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contribution to pharmacognosy research.


Supporting information

 
  • References

  • 1 World Health Organization. General guidelines for methodologies on research and evaluation of traditional medicine (WHO/EDM/TRM/2000.1). Available at. http://apps.who.int/iris/bitstream/10665/66783/1/WHO_EDM_TRM_2000.1.pdf Accessed January 4, 2017
  • 2 National Center for Biotechnology Information, U.S.. National Library of Medicine (USA). Herbal medicine – PubMed – NCBI. Available at. https://www.ncbi.nlm.nih.gov/pubmed/?term=herbal+medicine Accessed January 3, 2017
  • 3 National Center for Biotechnology Information, U.S.. National Library of Medicine (USA). Traditional medicine – PubMed – NCBI. Available at. https://www.ncbi.nlm.nih.gov/pubmed/?term=traditional+medicine Accessed January 3, 2017
  • 4 European Medicines Agency. Committee on Herbal Medicinal Products (HMPC). Available at. http://www.ema.europa.eu/ema/index.jsp?curl=pages/about_us/general/general_content_000264.jsp&mid=WC0b01ac0580028e7c%23 Accessed January 4, 2017
  • 5 Chinou I, Knoess W, Calapai G. Regulation of herbal medicinal products in the EU: an up-to-date scientific review. Phytochem Rev 2014; 13: 539-545
  • 6 The European Parliament and The Council. Directive 2001/83/EC. Available at. http://ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/dir_2001_83_consol_2012/dir_2001_83_cons_2012_en.pdf Accessed January 4, 2017
  • 7 Committee on Herbal Medicinal Products (HMPC). Community herbal monograph on Rosmarinus officinalis L., folium (EMA/HMPC/13633/2009). Available at. http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_Community_herbal_monograph/2011/01/WC500101494.pdf Accessed January 4, 2017
  • 8 Council of Europe. European Pharmacopoeia, 8th edition 2013, English: Subscription to Main volume + Supplement 1 + Supplement 2, 8th edition. Stuttgart: Deutscher Apotheker Verlag; 2013
  • 9 Hänsel R, Keller K, Rimpler H, Schneider G. Hagers Handbuch der Pharmazeutischen Praxis: Drogen P – Z, 5th edition. Berlin, Heidelberg: Springer; 1994
  • 10 Schneider G, Dingermann T. Arzneidrogen, 5th edition. München: Elsevier Spektrum Akademischer Verlag; 2004
  • 11 Blaschek W, Wichtl M, Bauer R, Buff W, Classen B, Heise EM, Hensel A, Krenn L, Lichius JJ, Lindequist U, Loew D, Melzig MF, Stahl-Biskup E, Teuscher E, Volk RB. Wichtl – Teedrogen und Phytopharmaka: Ein Handbuch für die Praxis, 6th edition. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2016
  • 12 Richheimer SL, Bernart MW, King GA, Kent MC, Beiley DT. Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J Am Oil Chem Soc 1996; 73: 507-514
  • 13 Pokorny J. Application of phenolic antioxidants in food products. Elect J Env Agric Food Chem 2008; 7: 3320-3324
  • 14 Zhang Y, Smuts JP, Dodbiba E, Rangarajan R, Lang JC, Armstrong DW. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J Agric Food Chem 2012; 60: 9305-9314
  • 15 Nakatani N, Inatani R. Structure of rosmanol, a new antioxidant from rosemary (Rosmarinus officinalis L.). Agric Biol Chem 1981; 45: 2385-2386
  • 16 Lamaison JL, Petitjean-Freytet C, Carnat A. Lamiacees medicinales a proprietes antioxydantes, sources potentielles dʼacide rosmarinique. Pharm Acta Helv 1991; 66: 185-188
  • 17 Gracza L, Ruff P. Über Vorkommen und Analytik von Phenylpropanderivaten, 5. Mitt. Rosmarinsäure in Arzneibuchdrogen und ihre HPLC-Bestimmung. Arch Pharm (Weinheim) 1984; 317: 339-345
  • 18 Kallmann S. Beiträge zur pharmazeutischen Qualitätsprüfung häufig verwendeter Arzneipflanzen [Dissertation]. Berlin: Freie Universität Berlin; 1985
  • 19 Scarpati M, Oriente G. Isolamento e costituzione dellʼacido rosmarinico (dal Rosmarinus off.). Ric Sci 1958; 28: 2329-2333
  • 20 Petersen M. Rosmarinic acid: new aspects. Phytochem Rev 2013; 12: 207-227
  • 21 Ellis BE, Towers GHN. Biogenesis of rosmarinic acid in Mentha . Biochem J 1970; 118: 291-297
  • 22 Litvinenko VI, Popova TP, Simonjan AV, Zoz IG, Sokolov VS. „Gerbstoffe“ und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med 1975; 27: 372-380
  • 23 Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 2003; 51: 2866-2887
  • 24 Shahidi F, Wanasundara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr 1992; 32: 67-103
  • 25 Prakash D, Suri S, Upadhyay G, Singh BN. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 2007; 58: 18-28
  • 26 Chalas J, Claise C, Edeas M, Messaoudi C, Vergnes L, Abella A, Lindenbaum A. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomed Pharmacother 2001; 55: 54-60
  • 27 Parnham MJ, Kesselring K. Rosmarinic acid. Drugs Future 1985; 10: 756-757
  • 28 Bulgakov VP, Inyushkina YV, Fedoreyev SA. Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 2012; 32: 203-217
  • 29 Troncoso N, Sierra H, Carvajal L, Delpiano P, Günther G. Fast high performance liquid chromatography and ultraviolet-visible quantification of principal phenolic antioxidants in fresh rosemary. J Chromatogr A 2005; 1100: 20-25
  • 30 Almela L, Sánchez-Muñoz B, Fernández-López JA, Roca MJ, Rabe V. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J Chromatogr A 2006; 1120: 221-229
  • 31 Li W, Qu H. Rapid quantification of phenolic acids in Radix Salvia Miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode. J Pharm Biomed Anal 2010; 52: 425-431
  • 32 Saltas D, Pappas CS, Daferera D, Tarantilis PA, Polissiou MG. Direct determination of rosmarinic acid in Lamiaceae herbs using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometrics. J Agric Food Chem 2013; 61: 3235-3241
  • 33 Mirabella FM. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker; 1993
  • 34 Workman J, Weyer L. Practical Guide to interpretive near-infrared Spectroscopy. Boca Raton: CRC Press; 2008
  • 35 Siesler HW. Near-infrared Spectroscopy: Principles, Instruments, Applications. 2nd edition. Weinheim: Wiley-VCH Verlag; 2005
  • 36 Kellner R, Mermet JM, Otto M, Valcárcel M, Widmer HM. Analytical Chemistry: a modern Approach to analytical Science. 2nd edition. Weinheim: Wiley-VCH Verlag; 2004
  • 37 Kirchler CG, Pezzei CK, Bec KB, Mayr S, Ishigaki M, Ozaki Y, Huck CW. Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium . Analyst 2017; 142: 455-464
  • 38 Schönbichler SA, Falser GFJ, Hussain S, Bittner LK, Abel G, Popp M, Bonn GK, Huck CW. Comparison of NIR and ATR-IR spectroscopy for the determination of the antioxidant capacity of Primulae flos cum calycibus . Anal Methods 2014; 6: 6343-6351
  • 39 Schönbichler SA, Bittner LKH, Pallua JD, Popp M, Abel G, Bonn GK, Huck CW. Simultaneous quantification of verbenalin and verbascoside in Verbena officinalis by ATR-IR and NIR spectroscopy. J Pharm Biomed Anal 2013; 84: 97-102
  • 40 Schulz H, Pfeffer S, Quilitzsch R, Steuer B, Reif K. Rapid and non-destructive determination of the echinacoside content in Echinacea roots by ATR-IR and NIR spectroscopy. Planta Med 2002; 68: 926-929
  • 41 Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 1989; 43: 772-777
  • 42 Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 1985; 39: 491-500
  • 43 Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964; 36: 1627-1639
  • 44 Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 1988; 60: 1193-1202
  • 45 Allegrini F, Olivieri AC. IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal Chem 2014; 86: 7858-7866
  • 46 Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648-5652
  • 47 Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 1988; 37: 785-789
  • 48 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 1994; 98: 11623-11627
  • 49 Kesharwani MK, Brauer B, Martin JML. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided?. J Phys Chem A 2015; 119: 1701-1714
  • 50 Biczysko M, Panek P, Scalmani G, Bloino J, Barone V. Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method: analytic second derivatives and benchmark studies. J Chem Theory Comput 2010; 6: 2115-2125
  • 51 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc.; 2009
  • 52 Pulay P, Fogarasi G, Pang F, Boggs JE. Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. J Am Chem Soc 1979; 101: 2550-2560
  • 53 Jamroz MH. Vibrational Energy Distribution Analysis VEDA 4. Warsaw: 2004.  –  2010