Klin Monbl Augenheilkd 2019; 236(06): 784-790
DOI: 10.1055/s-0043-108195
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Schichtdickenmessungen der retinalen Nervenfaserschicht mit optischer Kohärenztomografie bei Glaukompatienten und Gesunden

Retinal nerve fiber layer thickness measurements with optical coherence tomography in glaucoma patients and healthy controls
Christian Yahya Mardin
Augenklinik, Universitätsklinikum Erlangen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 10. Januar 2017

akzeptiert 30. März 2017

Publikationsdatum:
06. Juli 2017 (online)

Zusammenfassung

Die Schichtdickenmessung der retinalen Nervenfaserschicht (RNF) bei Glaukomen ist zu einem wichtigen diagnostischen Kriterium und Verlaufsindikator geworden. Hohe Bildauflösung und fortgeschrittene Auswertealgorithmen machen dies möglich. Es werden im Folgenden die OCT-Anatomie, Aufnahmetechnik, Normwerte, Progressionsbeobachtung und der Einfluss von Artefakten auf die OCT-Messungen erörtert. Das Wissen um die Möglichkeiten und Fußangeln der OCT-Darstellung soll helfen, diese Technik in den Patientenversorgungsalltag zu integrieren.

Abstract

Thickness measurements of the retinal nerve fiber layer in glaucomas have become an important tool for diagnosis and follow-up of progression. High image resolution and advanced evaluation algorithms led to this achievement. In the following OCT anatomy, imaging technique, normative values, monitoring of progression and the influence of artefacts on OCT measurements are matter of discussion. Knowledge of capabilities and pitfalls of RNF imaging with OCT should help to integrate this technique into daily patient routine.

 
  • Literatur

  • 1 Sung KR, Kim DY, Park SB. et al. Comparison of retinal nerve fibre layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 2009; 116: 1264-1270
  • 2 Sehi M, Grewal DS, Sheets CW. et al. Diagnostic ability of Fourier-domain vs. time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009; 148: 597-605
  • 3 Bendschneider D, Tornow RP, Horn FK. et al. Retinal nerve fibre layer thickness in normals measured by spectral domain OCT. J Glaucoma 2010; 19: 475-482
  • 4 Silverman AL, Hammel N, Khachatryan N. et al. Diagnostic accuracy of the Spectralis and Cirrus reference databases in differentiating between healthy and early glaucoma eyes. Ophthalmology 2016; 123: 408-414
  • 5 Mardin CY, Schrems W, Schrems-Hösl L-M. et al. Repeatibility and reproducibility of optic nerve head and retinal nerve fibre layer parameter measurements with the Heidelberg Spectralis OCT. Invest Ophthalmol Vis Sci 2016; 57: Abstract. 989
  • 6 Wollstein G, Ishikawa H, Wang J. et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139: 39-43
  • 7 Leung CK, Cheung CY, Weinreb RN. et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51: 217-222
  • 8 Wessel J, Horn FK, Tornow R. et al. Analysis of progression in glaucoma using spectral-domain OCT. Invest Ophthalmol Vis Sci 2012; 53: Abstract. 232
  • 9 Mwanza JC, Kim HY, Budenz DL. et al. Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci 2015; 56: 6344-6351
  • 10 Leung CK, Ye C, Weinreb RN. et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology 2013; 120: 25-92
  • 11 Harwerth RS, Wheat JL. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch Clin Exp Ophthalmol 2008; 246: 305-314
  • 12 Thomson KL, Yeo JM, Waddell B. et al. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement 2015; 23: 136-143
  • 13 Bittersohl D, Stemplewitz B, Keserü M. et al. Detection of retinal changes in idiopathic Parkinsonʼs disease using high-resolution optical coherence tomography and Heidelberg retina tomography. Acta Ophthalmol 2015; 93: 578-584
  • 14 Jindahra P, Hedges TR, Mendoza-Santiesteban CE. et al. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol 2010; 23: 16-23
  • 15 Van der Schoot J, Vermeer KA, de Boer JF. et al. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fibre layer in spectral domain optical coherence tomography images. Invest Ophthalmol Vis Sci 2012; 53: 2424-2430
  • 16 Gardiner SK, Fortune B, Demirel S. Localized changes in retinal nerve fiber layer thickness as a predictor of localized functional change. Am J Ophthalmol 2016; 170: 75-82
  • 17 Xin D, Talamini CL, Raza AS. et al. Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects. Invest Ophthalmol Vis Sci 2011; 52: 7180-7186
  • 18 Hood DC, De Cuir N, Mavrommatis MA. et al. Defects along blood vessels in glaucoma suspects and patients. Invest Ophthalmol Vis Sci 2016; 57: 1680-1686
  • 19 Hood DC, Fortune B, Mavrommatis MA. et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci 2015; 56: 6208-6216
  • 20 Bagheie A, Yu Z, DʼSouza RM. Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution?. Med Image Anal 2017; 37: 129-145