Klin Monbl Augenheilkd 2019; 236(06): 777-783
DOI: 10.1055/s-0043-109693
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Expansion und Transplantation limbaler Stammzellen zur Regeneration der kornealen Oberfläche

Expansion and Transplantation of Limbal Stem Cells for Corneal Surface Regeneration
Adrian Gericke
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
,
Joanna Wasielica-Poslednik
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
,
Marion Zimmermann
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
,
Aytan Musayeva
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
› Author Affiliations
Further Information

Publication History

eingereicht 30 January 2017

akzeptiert 21 March 2017

Publication Date:
02 June 2017 (online)

Zusammenfassung

Die Regeneration des Hornhautepithels wird beim Menschen über das Stammzellreservoir des Limbus reguliert. Bei ausgedehnter Zerstörung der Limbusregion im Rahmen von Entzündungen, Verbrennungen oder Verätzungen kann sich eine limbale Stammzellinsuffizienz ausbilden, bei der es zu einer Vaskularisation und Eintrübung der Hornhaut mit funktioneller Beeinträchtigung kommen kann. Es stehen verschiedene Verfahren der autologen und allogenen Transplantation limbaler Stammzellen zur Verfügung. So können ganze Limbusabschnitte und kleine Limbusbiopsate direkt transplantiert oder aus kleinen Limbusbiopsaten stammende Zellen zunächst ex vivo auf Trägermembranen vermehrt und anschließend auf das betroffene Auge aufgebracht werden. In der Übersichtsarbeit werden die Physiologie des Hornhautepithels, die Pathophysiologie der limbalen Stammzellinsuffizienz und die verschiedenen Therapieverfahren dargestellt.

Abstract

In humans, regeneration of the corneal epithelium is regulated by the stem cell reservoir of the limbus. After extensive limbal damage, e.g., by inflammation, thermal burn or chemical injury, limbal stem cell deficiency leading to vascularization and opacification of the cornea and resulting in vision loss, may develop. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of corneal epithelium, the pathophysiology of limbal stem cell deficiency and the therapeutic procedures will be presented.

 
  • Literatur

  • 1 Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 1971; 229: 560-561
  • 2 Dua HS, Shanmuganathan VA, Powell-Richards AO. et al. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005; 89: 529-532
  • 3 Shortt AJ, Secker GA, Munro PM. et al. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 2007; 25: 1402-1409
  • 4 Molvaer RK, Andreasen A, Heegaard S. et al. Interactive 3D computer model of the human corneolimbal region: crypts, projections and stem cells. Acta Ophthalmol 2013; 91: 457-462
  • 5 Tseng SC. Concept and application of limbal stem cells. Eye (Lond) 1989; 3: 141-157
  • 6 Watanabe K, Nishida K, Yamato M. et al. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 2004; 565: 6-10
  • 7 Di Iorio E, Barbaro V, Ruzza A. et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A 2005; 102: 9523-9528
  • 8 Ordonez P, Chow S, Wakefield D. et al. Human limbal epithelial progenitor cells express αvβ5-integrin and the interferon-inducible chemokine CXCL10/IP-10. Stem Cell Res 2013; 11: 888-901
  • 9 Ksander BR, Kolovou PE, Wilson BJ. et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 2014; 511: 353-357
  • 10 Nishida K, Kinoshita S, Ohashi Y. et al. Ocular surface abnormalities in aniridia. Am J Ophthalmol 1995; 120: 368-375
  • 11 Aslan D, Akata RF, Holme H. et al. Limbal stem cell deficiency in patients with inherited stem cell disorder of dyskeratosis congenita. Int Ophthalmol 2012; 32: 615-622
  • 12 Grueterich M. [The clinical aspects of limbal stem cell deficiency]. Ophthalmologe 2012; 109: 850-856
  • 13 Tsai RJ, Sun TT, Tseng SC. Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology 1990; 97: 446-455
  • 14 Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 1995; 102: 1476-1485
  • 15 Pedrotti E, Passilongo M, Fasolo A. et al. In vivo confocal microscopy 1 year after autologous cultured limbal stem cell grafts. Ophthalmology 2015; 122: 1660-1668
  • 16 Dua HS, Miri A, Alomar T. et al. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology 2009; 116: 856-863
  • 17 Dua HS. The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol 1998; 82: 1407-1411
  • 18 Anderson DF, Ellies P, Pires RT. et al. Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol 2001; 85: 567-575
  • 19 Gomes JA, dos Santos MS, Cunha MC. et al. Amniotic membrane transplantation for partial and total limbal stem cell deficiency secondary to chemical burn. Ophthalmology 2003; 110: 466-473
  • 20 Sangwan VS, Matalia HP, Vemuganti GK. et al. Amniotic membrane transplantation for reconstruction of corneal epithelial surface in cases of partial limbal stem cell deficiency. Indian J Ophthalmol 2004; 52: 281-285
  • 21 Tseng SC, Tsubota K. Important concepts for treating ocular surface and tear disorders. Am J Ophthalmol 1997; 124: 825-835
  • 22 Boudreau N, Sympson CJ, Werb Z. et al. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 1995; 267: 891-893
  • 23 Meller D, Pires RT, Tseng SC. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 2002; 86: 463-471
  • 24 Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989; 96: 709-722
  • 25 Miri A, Al-Deiri B, Dua HS. Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 2010; 117: 1207-1213
  • 26 Busin M, Breda C, Bertolin M. et al. Corneal epithelial stem cells repopulate the donor area within 1 year from limbus removal for limbal autograft. Ophthalmology 2016; 123: 2481-2488
  • 27 Tsai RJ, Tseng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea 1994; 13: 389-400
  • 28 Tsubota K, Toda I, Saito H. et al. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology 1995; 102: 1486-1496
  • 29 Tsubota K, Satake Y, Kaido M. et al. Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N Engl J Med 1999; 340: 1697-1703
  • 30 Ilari L, Daya SM. Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 2002; 109: 1278-1284
  • 31 Reinhard T, Spelsberg H, Henke L. et al. Long-term results of allogeneic penetrating limbo-keratoplasty in total limbal stem cell deficiency. Ophthalmology 2004; 111: 775-782
  • 32 Shimazaki J, Shimmura S, Tsubota K. Donor source affects the outcome of ocular surface reconstruction in chemical or thermal burns of the cornea. Ophthalmology 2004; 111: 38-44
  • 33 Pellegrini G, Traverso CE, Franzi AT. et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990-993
  • 34 Scholz SL, Thomasen H, Hestermann K. et al. [Long-term results of autologous transplantation of limbal epithelium cultivated ex vivo for limbal stem cell deficiency]. Ophthalmologe 2016; 113: 321-329
  • 35 Rama P, Matuska S, Paganoni G. et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 2010; 363: 147-155
  • 36 Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 2000; 343: 86-93
  • 37 Higa K, Shimazaki J. Recent advances in cultivated epithelial transplantation. Cornea 2008; 27 (Suppl. 01) S41-S47
  • 38 Stasi K, Goings D, Huang J. et al. Optimal isolation and xeno-free culture conditions for limbal stem cell function. Invest Ophthalmol Vis Sci 2014; 55: 375-386
  • 39 Na KS, Mok JW, Joo CK. Ex vivo human corneal epithelial cell expansion from a xeno-feeder-free system. Ophthalmic Res 2015; 53: 217-224
  • 40 Sangwan VS, Basu S, Vemuganti GK. et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol 2011; 95: 1525-1529
  • 41 Di Iorio E, Ferrari S, Fasolo A. et al. Techniques for culture and assessment of limbal stem cell grafts. Ocul Surf 2010; 8: 146-153
  • 42 Shimazaki J, Higa K, Morito F. et al. Factors influencing outcomes in cultivated limbal epithelial transplantation for chronic cicatricial ocular surface disorders. Am J Ophthalmol 2007; 143: 945-953
  • 43 Pauklin M, Fuchsluger TA, Westekemper H. et al. Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 2010; 45: 57-70
  • 44 European Medicines Agency. Holoclar. Ex vivo expandierte autologe menschliche Hornhautepithelzellen, die Stammzellen enthalten. Im Internet: http://www.ema.europa.eu/docs/de_DE/document_library/EPAR_-_Summary_for_the_public/human/002450/WC500183406.pdf Stand: 15.05.2017
  • 45 Sangwan VS, Basu S, MacNeil S. et al. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 2012; 96: 931-934
  • 46 Mittal V, Jain R, Mittal R. Ocular surface epithelialization pattern after simple limbal epithelial transplantation: an in vivo observational study. Cornea 2015; 34: 1227-1232
  • 47 Vazirani J, Ali MH, Sharma N. et al. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: multicentre results. Br J Ophthalmol 2016; 100: 1416-1420
  • 48 Basu S, Sureka SP, Shanbhag SS. et al. Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology 2016; 123: 1000-1010
  • 49 Sejpal K, Ali MH, Maddileti S. et al. Cultivated limbal epithelial transplantation in children with ocular surface burns. JAMA Ophthalmol 2013; 131: 731-736
  • 50 Nishida K, Yamato M, Hayashida Y. et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004; 351: 1187-1196
  • 51 Satake Y, Higa K, Tsubota K. et al. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology 2011; 118: 1524-1530
  • 52 Sotozono C, Inatomi T, Nakamura T. et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 2013; 120: 193-200
  • 53 Chen HC, Chen HL, Lai JY. et al. Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci 2009; 50: 4660-4668
  • 54 Nakamura T, Takeda K, Inatomi T. et al. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 2011; 95: 942-946
  • 55 Ricardo JR, Cristovam PC, Filho PA. et al. Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 2013; 32: 221-228
  • 56 Zhang W, Yang W, Liu X. et al. Rapidly constructed scaffold-free embryonic stem cell sheets for ocular surface reconstruction. Scanning 2014; 36: 286-292
  • 57 Sareen D, Saghizadeh M, Ornelas L. et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 2014; 3: 1002-1012
  • 58 Rohaina CM, Then KY, Ng AM. et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 2014; 163: 200-210
  • 59 Meyer-Blazejewska EA, Call MK, Yamanaka O. et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 2011; 29: 57-66
  • 60 Gomes JA, Geraldes Monteiro B, Melo GB. et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 2010; 51: 1408-1414
  • 61 Reza HM, Ng BY, Gimeno FL. et al. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev 2011; 7: 935-947
  • 62 Garzon I, Martin-Piedra MA, Alfonso-Rodriguez C. et al. Generation of a biomimetic human artificial cornea model using Whartonʼs jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55: 4073-4083
  • 63 Zhou Q, Liu XY, Ruan YX. et al. Construction of corneal epithelium with human amniotic epithelial cells and repair of limbal deficiency in rabbit models. Hum Cell 2015; 28: 22-36