Horm Metab Res 2017; 49(08): 618-624
DOI: 10.1055/s-0043-112349
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Varying Patterns of Biomarkers of Mineral and Bone Metabolism After Kidney Transplantation

Agnieszka Makówka
1   Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland
,
Maciej Głyda
2   Department of Transplant Surgery with Urology Subdivision, Regional Hospital, Poznan, Poland
,
Ewa-Rutkowska Majewska
1   Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland
,
Michał Nowicki
1   Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 08. Dezember 2016

accepted 23. Mai 2017

Publikationsdatum:
05. Juli 2017 (online)

Abstract

Sclerostin inhibits Wnt/β-catenin signaling pathway, thereby decreasing bone formation. Osteoblast stimulating actions of parathyroid hormone (PTH) are mediated by suppression of sclerostin. Thus, sclerostin may reflect both bone metabolism and parathyroid function. The study was aimed to analyze the patterns of the changes of mineral and bone biomarkers for 9 months following kidney transplantation (KTx). Thirty-five patients after KTx were included into a 9-month observational study. Serum creatinine, calcium, phosphorus, 25-OH vitamin D, PTH, fibroblast growth factor 23 (FGF-23), sclerostin, and bone-specific alkaline phosphatase (BAP) were measured before KTx, and 1, 2 weeks, and 1, 2, 3, 4, 5, 6, and 9 months thereafter. Urine sclerostin/creatinine ratio was assessed in parallel from month 1 after KTx. Following KTx most serum markers significantly decreased till the end of observation including PTH (by 58%), phosphorus (37%), sclerostin (31%), BAP (28%), and FGF-23 (82%). Most of the decrease was observed during first 2 months after KTx. Serum calcium was increased by 17%. Urine sclerostin/creatinine ratio increased from month 1 till month 6. At KTx serum FGF-23 correlated only with phosphate (r=0.62, p=0.01) and PTH with BAP (r=0.49, p=0.04) but not with sclerostin. At the end of the study neither serum sclerostin nor FGF-23 correlated with other parameters of mineral and bone metabolism. Sclerostin shows the limited utility as the marker of the resolution of bone and mineral metabolism after KTx.

 
  • References

  • 1 Bonani M, Rodriguez D, Fehr T, Mohebbi N, Brockman J, Blum M, Graf N, Frey D, Wuthrich RP. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press Res 2014; 39: 230-239
  • 2 Bover J, Cozzolino M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: New insights into vitamin D receptor activation. Kidney Int 2011; 1: 122-129
  • 3 Brandenburg VM, Kramann R, Koos R, Kruger R, Schurgers L, Muhlenbruch G, Hubner S, Gladziwa U, Drechsler Ch, Ketteler M. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: A cross-sectional study. BMC Nephrology 2013; 10: 219
  • 4 Cejka D, Lansky AJ, Kieweg H, Weber M, Bieglmayer Ch, Haider DG, Diarra D, Patsch JM, Kainberger F, Bohle B, Haas M. Sclerostin serum level correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant 2010; 27: 226-230
  • 5 Ferreira JC, Ferrari GO, Neves KR, Cavallari RT, Dominguez WV, dos Reis LM, Graciolli FG, Oliveira EC, Liu S, Sabbagh Y, Jorgetti V, Schiavi S, Moyses RMA. Effect of dietary phosphate on adynamic bone disease in rats with chronic kidney disease – role of sclerostin?. PLoS One 2013; 8: e79721
  • 6 Drüeke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int 2016; 89: 289-302
  • 7 Jean G, Chazot Ch. Sclerostin in CKD-MBD: One more paradoxical bone protein. Nephrol Dial Transplant 2013; 28: 2932-2935
  • 8 Miller PD. Bone disease in CKD: A focus on osteoporosis diagnosis and management. Am J Kidney Dis 2014; 64: 290-304
  • 9 Evenepoel P, Claes K, Kuypers D, Maes B, Bammes B, Vanrenterghem Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol Dial Transplant 2004; 19: 1281-1287
  • 10 Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y. Tertiary ‘hyperphosphatonism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant 2007; 7: 1193-1200
  • 11 Economidou D, Dovas S, Papagianini A, Pateinakis P.Memmos FGF-23 levels before and after renal transplantation. J Transpl 2009 Article ID 379082
  • 12 Pluskiewicz W, Żywiec J, Gumprecht J. Spine bone mineral density in subjects after renal transplantation compared with end-stage renal failure and healthy subjects. Horm Metab Res 2009; 41: 563-567
  • 13 Rojas R, Carlini RG, Clesca P, Arminio A, Suniaga O, De Elguezabal K, Weisinger JR, Hruska KA, Bellorin-Front E. The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int 2003; 63: 1915-1923
  • 14 Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol 2002; 13: 551-555
  • 15 Epstein S, Stuss M. Transplantation osteoporosis. Pol J Endocrinol 2011; 62: 472-485
  • 16 Sprague SM, Belozeroff V, Danese MD, Martin LP, Olgaard K. Abnormal bone and mineral metabolism in kidney transplant patients – a review. Am J Nephrol 2008; 28: 246-253
  • 17 Delanaye P, Souberbielle J-C, Lafage-Proust MH, Jean G, Cavalier E. Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 2014; 29: 997-1004
  • 18 Delanaye P, Cavalier E, Bouquegneau A, Khwaja A. Sclerostin levels in CKD patients: an important, but not definitive, step on the way to clinical use. Kidney Int 2015; 88: 1221-1223
  • 19 Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy subjects. J Clin Endocrinol Metab 2012; 97: 148-154
  • 20 Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH. Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Min Res 2011; 26: 2812-2822
  • 21 Ardawi MS, Al-Sibiany AM, Bakhsh TM, Rouzi AA, Qari MH. Decreased serum sclerostin levels in patients with primary hyperparathyroidism: A cross-sectional and a longitudinal study. Osteopor Int 2012; 23: 1789-1797
  • 22 Cejka D, Herbeth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 2011; 6: 877-882
  • 23 Drueke TB, Lafage-Proust M-H. Sclerostin: Just one player in renal bone disease. Clin J Am Soc Nephrol 2011; 6: 700-703
  • 24 Lewiecki EM. Sclerostin: A novel target for intervention in the treatment of osteoporosis. Discov Med 2012; 12: 263-273
  • 25 Maluche HH, Davenport DL, Cantor T, Monier-Faugere M-C. Bone mineral density and serum biochemical predictor of bone loss in patient with CKD on dialysis. Clin J Am Soc Nephrol 2014; 9: 1-9
  • 26 Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 2010; 95: 2248-2253
  • 27 Honasoge M, Rao AD, Rao SD. Sclerostin: recent advances and clinical implications. Curr Opin Endocrinol Diabetes Obes 2014; 21: 437-446
  • 28 Viapiana O, Fracassi E, Troplini S, Idolazzi L, Rossini M, Adami S, Gatti D.. Sclerostin and DKK1 in Primary Hyperparathyroidism. Calcif Tissue Int 2013; 92: 324
  • 29 Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 2015; 88: 235-240
  • 30 Evenepoel P, Claes K, Viaene L, Bammens B, Meijers B, Naesens M, Sprangers B, Kuypers D. Decreased circulating sclerostin levels in renal transplant recipients with persistent hyperparathyroidism. Transplantation 2016; 100: 2188-2193
  • 31 Pelletier S, Dubourg L, Carlier M-Ch, Hadj-Aissa A, Fouque D. The relationship between renal function and serum Sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 2013; 8: 1-5
  • 32 Thambiah S, Roplekar R, Manghat P, Fogelman I, Fraser WD, Goldsmith D, Hampson G. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): Relationship with bone density and arterial stiffness. Calcif Tissue Int 2012; 90: 473-480
  • 33 Qureshi AR, Olauson H, Witasp A, Haarhaus M, Brandenburg M, Brandenburg V, Wernerson A, Lindholm B, Soderberg M, Wenberg L, Nordfors L, Ripsweden J, Barany P, Stenvinkel P. Increased circulation sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int 2015; 88: 1356-1364
  • 34 Cejka D, Marculescu R, Kozakowski N, Plischke M. Reiter Gessl A, Haas M. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab 2014; 99: 248-255
  • 35 Sabbagh Y, Graciolli FG. FG O’Brien S. S Tang W. W dos Reis LM. LM Ryan S, Phillips S, Boulanger L. J Song W. W Bracken C. C Liu S. S Ledbetter S. S Dechow P. P Canziani ME. ME Carvalho AB. AB Jorgetti V. V Moyses RM. RM Schiavi SC. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 2012; 27: 1757-1772
  • 36 Pereira RC, Valta H, Tumber N, Salusky IB, Jalanko H, Mäkitie Q, Wesseling Perry K. Altered osteocyte-specific protein expression in bone after childhood solid organ transplantation. Plos One 2015; 10: e0138156
  • 37 Evenepoel P, Goffin E, Meijers B, Kanaan N, Bammens B, Coche E, Claes K, Jadoul M. Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J Clin Endocrinol Metab 2015; 100: 4669-4676
  • 38 Tomei P, Zaza S, Granata S, Gatti D, Fraccarollo C, Gesualdo L, Boschiero L, Lupo A. Sclerostin and Dickkopf-1 in post-menopausal renal allograft recipients. Transplant Proc 2014; 46: 2241-2246
  • 39 Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporosis Int 2013; 24: 489-494
  • 40 Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton III IJ, Khosla S. Relation of age gender and bone mass to circulating Sclerostin levels in women and men. J Bone Miner Res 2011; 26: 373-379
  • 41 Adami G, Orsolini G, Adami S, Viapiana O, Idolazzi L, Gatti D, Rossini M. Effects of TNF inhibitors on parathyroid hormone and wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int 2016; 99: 360-364
  • 42 Sardiwal S, Magnusson P, Goldsmith DJ, Lamb EJ. Bone alkaline phosphatase in CKD-mineral bone disorder. Am J Kidney Dis 2013; 62: 810-822
  • 43 Kakareko K, Rydzewska-Rosolowska A, Brzosko S, Gozdzikiewicz-Lapinska J, Koc-Zorawska E, Samocik P, Kozlowski R, Mysliwiec M, Naumnik B, Hryszko T. Renal handling of sclerostin in response to acute glomerular filtration decline. Horm Metab Res 2016; 48: 457-461
  • 44 van Lierop AH, Witteveen JE, Hamdy NA, Papapoulos SE. Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 2010; 163: 833-837
  • 45 Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 2005; 146: 4577-4583
  • 46 Bellido T. Downregulation of SOST/Sclerostin by PTH: A novel mechanism of hormonal control of bone formation mediated by osteocytes. J Musculoskelet Neuronal Interact 2006; 6: 358-359
  • 47 Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 2010; 95: 1991-1997
  • 48 Bienaimé F, Girard D, Anglicheau D, Canaud G, Souberbielle JC, Kreis H, Noel LH, Friedlander G, Elie C, Legendre C, Prie D. Vitamin D status and outcomes after renal transplantation. J Am Soc Nephrol 2013; 24: 831-841
  • 49 Wolf M, Weir MR, Kopyt N, Mannon RB, Von Visger J, Deng H, Yue S, Vincenti F. A prospective cohort study of mineral metabolism after kidney transplantation. Transplantation 2016; 100: 184-193
  • 50 Piec I, Washbourne Ch, Tang J, Fisher E, Greeves J, Jackson S, Fraser WD. How accurate is your sclerostin measurement? comparison between three commercially available sclerostin ELISA kits. Calcif Tissue Int 2016; 98: 546-555