RSS-Feed abonnieren
DOI: 10.1055/s-0043-112498
Injizierbare Füllmaterialien – Update und Zukunftsperspektive
Soft tissue fillers: state of the art and future perspectivesPublikationsverlauf
03/02/2017
05/02/2017
Publikationsdatum:
04. August 2017 (online)
Zusammenfassung
Neben der kosmetischen Verwendung kommen injizierbare Füllmaterialien auch im Bereich der plastisch-rekonstruktiven Therapie von Kontourdefekten am gesamten Körper zum Einsatz. Das ideale Füllmaterial sollte einfach zu injizieren und gut formbar sein, möglichst lange im Körper verweilen, weder allergen, kanzerogen noch anfällig für Infekte oder Biofilme sein, jedoch trotzdem potentiell reversibel, temperaturstabil und billig sein. Es gibt trotz eines großen Forschungsaufwandes in den letzten Jahrzehnten noch immer keinen Filler, der all diese Kriterien erfüllt. Mittlerweile ist eine breite Palette an Materialien, die unterschiedlichste Charakteristiken aufweisen, verfügbar. Hyaluronsäure, Kollagen (human oder bovin), Poly-Milchsäure (PLLA), Calcium-Hydroxyapatit (CaHA), Polymethylmethacrylat (PMMA), Silikon und Eigenfett sind zurzeit allesamt in klinischer Anwendung für verschiedenste Indikationen. Bei der Auswahl und Anwendung der Filler-Materialien muss zwischen Wirkdauer und Komplikationsrate abgewogen werden. Die Verwendung von permanenten Füllmaterialien geht mit einer erhöhten Rate an Nebenwirkungen wie Erytheme, Ödeme, Abszesse oder Ulzera einher. Die aktuellen Forschungsbemühungen auf industrieller und universitärer Ebene lassen einen Trend zugunsten der Entwicklung besser biokompatibler und trotzdem länger haltbarer Augmentationsmaterialien erkennen. Diese Übersichtsarbeit soll einen Überblick über die momentan gängigsten Filler-Materialien mit ihren Vor- und Nachteilen bieten und gleichzeitig neue potentiell erfolgreiche Ansätze beleuchten.
Abstract
In addition to cosmetic use, filler materials are frequently employed for reconstruction of contour defects. Scars and tissue defects after accidents, surgery and irradiation are also ideal indications for injectables. The ideal filler should be easy to inject, easy to form, and should remain in the body as long as possible. It should neither be allergenic or carcinogenic nor susceptible to infections or biofilms, but still potentially reversible, temperature-stable, and cheap. There is still no augmentation material that fulfils all of these criteria. A wide range of materials with widely varying characteristics is available on the market. Hyaluronic acid, collagen (human or bovine), polylactic acid (PLLA), calcium hydroxyapatite (CaHA), polymethylmethacrylate (PMMA), silicone and natural fat are all used in clinical practice for various indications. The current research efforts carried out at industrial institutions and universities are directed towards the development of augmentation materials with higher biocompatibility on the one hand and better durability on the other. In this review we provide an overview on filler materials currently used with their pros and cons. We further give an outlook on promising new approaches in the development pipeline.
-
Literatur
- 1 Kim JE, Sykes JM. Hyaluronic acid fillers: history and overview. Facial plastic surgery: FPS 2011; 27 (06) 523-8
- 2 The classic reprint. Concerning a subcutaneous prosthesis: Robert Gersuny. (Über eine subcutane Prothese. Zeitschrift f. Heilkunde Wien u Leipzig 21:199, 1900.). Translated from the German by Miss Rita Euerle. Plastic and reconstructive surgery 1980; 65 (04) 525-7
- 3 Shuck J, Iorio ML, Hung R. et al. Autologous fat grafting and injectable dermal fillers for human immunodeficiency virus-associated facial lipodystrophy: a comparison of safety, efficacy, and long-term treatment outcomes. Plastic and reconstructive surgery 2013; 131 (03) 499-506
- 4 Requena L, Requena C, Christensen L. et al. Adverse reactions to injectable soft tissue fillers. Journal of the American Academy of Dermatology 2011; 64 (01) 1-34 quiz 5–6
- 5 Lemperle G, Morhenn V, Charrier U. Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic plastic surgery 2003; 27 (05) 354-66 discussion 67
- 6 Daines SM, Williams EF. Complications associated with injectable soft-tissue fillers: a 5-year retrospective review. JAMA facial plastic surgery 2013; 15 (03) 226-31
- 7 Lee JC, Lorenc ZP. Synthetic Fillers for Facial Rejuvenation. Clinics in plastic surgery 2016; 43 (03) 497-503
- 8 Zielke H, Wolber L, Wiest L. et al. Risk profiles of different injectable fillers: results from the Injectable Filler Safety Study (IFS Study). Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2008; 34 (03) 326-35 discussion 35
- 9 Yeom J, Bhang SH, Kim BS. et al. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjugate chemistry 2010; 21 (02) 240-7
- 10 Carruthers J, Carruthers A, Tezel A. et al. Volumizing with a 20-mg/mL smooth, highly cohesive, viscous hyaluronic acid filler and its role in facial rejuvenation therapy. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2010; 36 (Suppl. 03) 1886-92
- 11 Tezel A, Fredrickson GH. The science of hyaluronic acid dermal fillers. Journal of cosmetic and laser therapy: official publication of the European Society for Laser Dermatology 2008; 10 (01) 35-42
- 12 Wang F, Garza LA, Kang S. et al. In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Archives of dermatology 2007; 143 (02) 155-63
- 13 Liew S, Scamp T, de Maio M. et al. Efficacy and Safety of a Hyaluronic Acid Filler to Correct Aesthetically Detracting or Deficient Features of the Asian Nose: A Prospective, Open-Label, Long-Term Study. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery 2016; 36 (07) 760-72
- 14 Lazzeri D, Agostini T, Figus M. et al. Blindness following cosmetic injections of the face. Plastic and reconstructive surgery 2012; 129 (04) 995-1012
- 15 Raspaldo H, De Boulle K, Levy PM. Longevity of effects of hyaluronic acid plus lidocaine facial filler. Journal of cosmetic dermatology 2010; 9 (01) 11-5
- 16 Administration USFaD. Soft Tissue Fillers Approved by the Center for Devices and Radiological Health. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/CosmeticDevices 2015
- 17 Gold MH. Use of hyaluronic acid fillers for the treatment of the aging face. Clinical interventions in aging 2007; 2 (03) 369-76
- 18 DeVore D, Zhu J, Brooks R. et al. Development and Characterization of a Rapid Polymerizing Collagen for Soft Tissue Augmentation. Journal of biomedical materials research Part A. 2015
- 19 DeVore DP, Brooks RJ, Byrne T. Injectable in situ polymerizable collagen composition. Google Patents. 2014
- 20 Lam SM, Azizzadeh B, Graivier M. Injectable poly-L-lactic acid (Sculptra): technical considerations in soft-tissue contouring. Plastic and reconstructive surgery 2006; 118 (Suppl. 03) 55s-63s
- 21 Vleggaar D. Soft-tissue augmentation and the role of poly-L-lactic acid. Plastic and reconstructive surgery 2006; 118 (Suppl. 03) 46s-54s
- 22 Narins RS. Minimizing adverse events associated with poly-L-lactic acid injection. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2008; 34 (Suppl. 01) S100-4
- 23 Valantin MA, Aubron-Olivier C, Ghosn J. et al. Polylactic acid implants (New-Fill) to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA. AIDS (London, England) 2003; 17 (17) 2471-7
- 24 Berlin AL, Hussain M, Goldberg DJ. Calcium hydroxylapatite filler for facial rejuvenation: a histologic and immunohistochemical analysis. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2008; 34 (Suppl. 01) S64-7
- 25 Goldberg DJ. Breakthroughs in US dermal fillers for facial soft-tissue augmentation. Journal of cosmetic and laser therapy: official publication of the European Society for Laser Dermatology 2009; 11 (04) 240-7
- 26 Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. European cells & materials 2003; 5: 1-16 discussion
- 27 Moers-Carpi MM, Sherwood S. Polycaprolactone for the Correction of Nasolabial Folds: A 24-Month, Prospective, Randomized, Controlled Clinical Trial. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2013; 39 (3 Pt 1) 457-63
- 28 Kim JA, Van Abel D. Neocollagenesis in human tissue injected with a polycaprolactone-based dermal filler. Journal of cosmetic and laser therapy: official publication of the European Society for Laser Dermatology 2015; 17 (02) 99-101
- 29 Kim MJ, Lee KC, Lee WJ. et al. FCP-07: Foreign body reaction to injectable polycaprolactone (Ellanese): Complication of granuloma formation of late onset. 2016; 68 (01) 282
- 30 Gold GT, Varma DM, Harbottle D. et al. Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials. Journal of biomedical materials research Part A 2014; 102 (12) 4536-44
- 31 D’Aloiso MC, Senzolo M, Azzena B. Efficacy and Safety of Cross-Linked Carboxymethylcellulose Filler for Rejuvenation of the Lower Face: A 6-Month Prospective Open-Label Study. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2016; 42 (02) 209-17
- 32 Leonardis M, Palange A. New-generation filler based on cross-linked carboxymethylcellulose: study of 350 patients with 3-year follow-up. Clinical interventions in aging 2015; 10: 147-55
- 33 Casavantes L, Lemperle G, Morales P. Penile Girth Enhancement With Polymethylmethacrylate-Based Soft Tissue Fillers. The journal of sexual medicine 2016; 13 (09) 1414-22
- 34 Fernandez-Cossio S, Castano-Oreja MT. Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler. Plastic and reconstructive surgery 2006; 117 (06) 1789-96
- 35 Levy LL, Emer JJ. Complications of minimally invasive cosmetic procedures: prevention and management. Journal of cutaneous and aesthetic surgery 2012; 5 (02) 121-32
- 36 Lemperle G, Romano JJ, Busso M. Soft tissue augmentation with artecoll: 10-year history, indications, techniques, and complications. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2003; 29 (06) 573-87 discussion 87
- 37 Rapaport MJ, Vinnik C, Zarem H. Injectable silicone: cause of facial nodules, cellulitis, ulceration, and migration. Aesthetic plastic surgery 1996; 20 (03) 267-76
- 38 Park ME, Curreri AT, Taylor GA. et al. Silicone Granulomas, a Growing Problem?. The Journal of clinical and aesthetic dermatology 2016; 9 (05) 48-51
- 39 Soost F, Stoll C, Meister P. [Injectable silicon-long term sequelae after use in plastic surgery]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 2001; 52 (10) 903-6
- 40 Coleman SR. Structural fat grafts: the ideal filler?. Clinics in plastic surgery 2001; 28 (01) 111-9
- 41 Hu MS, Leavitt T, Malhotra S. et al. Stem Cell-Based Therapeutics to Improve Wound Healing. Plastic Surgery International. 2015
- 42 Tonnard P, Verpaele A, Peeters G. et al. Nanofat grafting: basic research and clinical applications. Plastic and reconstructive surgery 2013; 132 (04) 1017-26
- 43 Osinga R, Menzi NR, Tchang LA. et al. Effects of intersyringe processing on adipose tissue and its cellular components: Implications in autologous fat grafting. Plastic and reconstructive surgery 2015; 135 (06) 1618-28
- 44 Duscher D, Atashroo D, Maan ZN. et al. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells. Stem Cells Translational Medicine 2016; 5 (02) 248-57
- 45 Duscher D, Luan A, Rennert RC. et al. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. Journal of Translational Medicine 2016; 14
- 46 Paik KJ, Zielins ER, Atashroo DA. et al. Studies in Fat Grafting: Part V. Cell-Assisted Lipotransfer to Enhance Fat Graft Retention Is Dose Dependent. Plastic and reconstructive surgery 2015; 136 (01) 67-75
- 47 Duscher D, Rennert RC, Januszyk M. et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports 2014; 4
- 48 Molliard SG. Heat sterilised injectable composition of hyaluronic acid or one of the salts thereof, polyols and lidocaine. Google Patents. 2013
- 49 Hadjipanayi E, Cheema U, Hopfner U. et al. Injectable system for spatio-temporally controlled delivery of hypoxia-induced angiogenic signalling. Journal of controlled release: official journal of the Controlled Release Society 2012; 161 (03) 852-60
- 50 Cecile G, Lebreton PF, Prost N. Hyaluronic acid compositions for dermatological use. Google Patents. 2011
- 51 Moutet M, Yadan JC. Phamaceutical/cosmetic compositions comprising hyaluronic acid and treatment of dermatological conditions therewith. Google Patents. 2009
- 52 Sisti A, Tassinari J, Grimaldi L. et al. Correction of nasolabial folds using hyaluronic acid filler plus subcutaneous injections of carbon dioxide. Plastic and reconstructive surgery. 2016
- 53 Chin SH, Burm JS, Kim YW. Selective dermal rejuvenation using intradermal injection of carbon dioxide and hyaluronic acid for facial wrinkles. Annals of plastic surgery 2013; 70 (06) 628-31
- 54 Kolle SF, Fischer-Nielsen A, Mathiasen AB. et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet (London, England) 2013; 382 (9898) 1113-20
- 55 Garza RM, Rennert RC, Paik KJ. et al. Studies in fat grafting: Part IV. Adipose-derived stromal cell gene expression in cell-assisted lipotransfer. Plastic and reconstructive surgery 2015; 135 (04) 1045-55
- 56 Luan A, Duscher D, Whittam AJ. et al. Cell-Assisted Lipotransfer Improves Volume Retention in Irradiated Recipient Sites and Rescues Radiation-Induced Skin Changes. Stem cells (Dayton, Ohio) 2016; 34 (03) 668-73
- 57 Kamakura T, Kataoka J, Maeda K. et al. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin. Plastic and reconstructive surgery 2015; 136 (05) 931-9
- 58 Hara T, Kakudo N, Morimoto N. et al. Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway. Journal of artificial organs: the official journal of the Japanese Society for Artificial Organs 2016; 19 (04) 372-7
- 59 Sclafani AP. Platelet-rich fibrin matrix for improvement of deep nasolabial folds. Journal of cosmetic dermatology 2010; 9 (01) 66-71
- 60 Ulusal BG. Platelet-rich plasma and hyaluronic acid – an efficient biostimulation method for face rejuvenation. Journal of cosmetic dermatology. 2016
- 61 Abate M, Verna S, Schiavone C. et al. Efficacy and safety profile of a compound composed of platelet-rich plasma and hyaluronic acid in the treatment for knee osteoarthritis (preliminary results). European journal of orthopaedic surgery & traumatology: orthopedie traumatologie 2015; 25 (08) 1321-6
- 62 Zeplin PH, Maksimovikj NC, Jordan MC. et al. Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation. Advanced Functional Materials 2014; 24 (18) 2658-66