Subscribe to RSS
DOI: 10.1055/s-0043-116649
Pharmakotherapie bei Multipler Sklerose
Subject Editor:
Publication History
Publication Date:
19 September 2017 (online)
Zusammenfassung
Multiple Sklerose (MS) ist eine chronisch entzündliche Erkrankung des Zentralen Nervensystems, die meist initial schubförmig-remittierend verläuft (RRMS) und häufig in einen sekundär chronisch-progedienten Verlauf (SPMS) übergeht. Zu den Symptomen zählen temporäre oder dauerhafte neurologische Ausfälle unter Umständen aller Funktionssysteme. Für die verlaufsmodifizierende Behandlung stehen zugelassene Medikamente zur Verfügung, deren Auswahl von Verlaufsform und Stadium der Erkrankung abhängt und zudem Patienten-Präferenzen berücksichtigen sollte. Empfohlen wird ein früher Beginn der MS-spezifischen Immuntherapie, um eine spätere Gewebeschädigung oder neurologische Behinderung zu verhindern bzw. hinauszuzögern.
Der Refresher vermittelt die Verlaufsformen der Multiplen Sklerose und die darauf abgestimmte verlaufsmodifizierende Pharmakotherapie.
-
Literatur
- 1 Krieger SC, Cook K, De Nino S. et al. The topographical model of multiple sclerosis: A dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm 2016; 3 (05) e279
- 2 Azevedo CJ, Overton E, Khadka S. et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm 2015; 2 (03) e102
- 3 Dörr J, Wernecke KD, Bock M. et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 2011; 6 (04) e18132
- 4 Pfueller CF, Brandt AU, Schubert F. et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One 2011; 6 (04) e18019
- 5 Oberwahrenbrock T, Ringelstein M, Jentschke S. et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler 2013; 19 (14) 1887-1895
- 6 Zimmermann H, Freing A, Kaufhold F. et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler 2013; 19 (04) 443-450
- 7 Dörr J, Döring A, Paul F.. Can we prevent or treat multiple sclerosis by individualised vitamin D supply?. EPMA J 2013; 4 (01) 4
- 8 Behrens JR, Rasche L, Gieß RM. et al. Low 25-hydroxyvitamin D, but not the bioavailable fraction of 25-hydroxyvitamin D, is a risk factor for multiple sclerosis. Eur J Neurol 2016; 23 (01) 62-67
- 9 Dardiotis E, Panayiotou E, Provatas A. et al. Gene variants of adhesion molecules act as modifiers of disease severity in MS. Neurol Neuroimmunol Neuroinflamm 2017; 4 (04) e350
- 10 Srinivasan S, Di Dario M, Russo A. et al. Dysregulation of MS risk genes and pathways at distinct stages of disease. Neurol Neuroimmunol Neuroinflamm 2017; 4 (03) e337
- 11 Rotstein DL, Healy BC, Malik MT. et al. Effect of vitamin D on MS activity by disease-modifying therapy class. Neurol Neuroimmunol Neuroinflamm 2015; 2 (06) e167
- 12 Endriz J, Ho PP, Steinman L.. Time correlation between mononucleosis and initial symptoms of MS. Neurol Neuroimmunol Neuroinflamm 2017; 4 (03) e308
- 13 Zivadinov R, Cerza N, Hagemeier J. et al. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with MS. NeurolNeuroimmunol Neuroinflamm 2016; 3 (01) e190
- 14 Veauthier C, Hasselmann H, Gold SM. et al. The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue. EPMA J 2016; 7: 25
- 15 Hasselmann H, Bellmann-Strobl J, Ricken R. et al. Characterizing the phenotype of multiple sclerosis-associated depression in comparison with idiopathic major depression. Mult Scler 2016; 22 (11) 1476-1484
- 16 Finke C, Schlichting J, Papazoglou S. et al. Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult Scler 2015; 21 (07) 925-934
- 17 Paul F.. Pathology and MRI: exploring cognitive impairment in MS. Acta Neurol Scand 2016; 134 (200) 24-33
- 18 Metz I, Beißbarth T, Ellenberger D. et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3 (02) e204
- 19 Finke C, Heine J, Pache F. et al. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurol Neuroimmunol Neuroinflamm 2016; 3 (03) e229
- 20 Oertel FC, Kuchling J, Zimmermann H. et al. Microstructural visual system changes in AQP4-antibody-seropositive NMOSD. Neurol Neuroimmunol Neuroinflamm 2017; 4 (03) e334
- 21 Chavarro VS, Mealy MA, Simpson A. et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm 2016; 3 (06) e286
- 22 Jarius S, Wildemann B, Paul F.. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176 (02) 149-164
- 23 Stellmann JP, Krumbholz M, Friede T. et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry 2017; 88 (08) 639-647
- 24 Schmidt FA, Maas MB, Geran R. et al. Olfactory dysfunction in patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm 2017; 4 (04) e369
- 25 Paul F, Ruprecht K.. Current immunotherapy of multiple sclerosis. Nervenarzt 2015; 86 (08) 1031-1042
- 26 Dörr J, Paul F.. The transition from first-line to second-line therapy in multiple sclerosis. Curr Treat Options Neurol 2015; 17 (06) 354
- 27 Bakshi R, Yeste A, Patel B. et al. Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3 (02) e200
- 28 Tao Y, Zhang X, Zivadinov R. et al. Immunologic and MRI markers of the therapeutic effect of IFN-β-1a in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm 2015; 2 (06) e176
- 29 Pérez-Miralles FC, Sastre-Garriga J, Vidal-Jordana A. et al. Predictive value of early brain atrophy on response in patients treated with interferon β. Neurol Neuroimmunol Neuroinflamm 2015; 2 (04) e132
- 30 Hegen H, Adrianto I, Lessard CJ. et al. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients. Neurol Neuroimmunol Neuroinflamm 2016; 3 (02) e202
- 31 Ghadiri M, Rezk A, Li R. et al. Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurol Neuroimmunol Neuroinflamm 2017; 4 (03) e340
- 32 Baharnoori M, Lyons J, Dastagir A. et al. Nonfatal PML in a patient with multiple sclerosis treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 2016; 3 (05) e274
- 33 Ma BB, Ostrow LW, Newsome SD. Disseminated zoster with paresis in a multiple sclerosis patient treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 2016; 3 (02) e203
- 34 Lundy SK, Wu Q, Wang Q. et al. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurol Neuroimmunol Neuroinflamm 2016; 3 (02) e211
- 35 Gross CC, Schulte-Mecklenbeck A, Klinsing S. et al. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2015; 3 (01) e183
- 36 Klotz L, Berthele ABrück. et al. Monitoring of blood parameters under course-modified MS therapy: Substance-specific relevance and current recommendations for action. Nervenarzt 2016; 87 (06) 645-659