Int J Sports Med 2017; 38(13): 1035-1043
DOI: 10.1055/s-0043-116670
Orthopedics & Biomechanics
© Georg Thieme Verlag KG Stuttgart · New York

Where does the One-Repetition Maximum Exist on the Force-Velocity Relationship in Squat?

Jean Romain Rivière
1   University Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
,
Jérémy Rossi
2   Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France
,
Pedro Jimenez-Reyes
3   Physical Activity and Sports Science, Catholic University of San Antonio, Murcia, Spain
,
Jean-Benoit Morin
4   Université Côte d’Azur, LAMHESS, Nice, France
,
Pierre Samozino
1   University Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf



accepted after revision 26. Juni 2017

Publikationsdatum:
01. Oktober 2017 (online)

Abstract

The aim was to determine the position of the one-repetition maximum (1RM) squat point on the force-velocity (F-V) relationship obtained during squat jump (SJ). Ten healthy athletes performed a 1RM squat during which ground reaction force and lower-limb extension velocity were measured, and six loaded SJs to determine individual F-V relationship. The goodness of fit of the linear F-V relationship with or without the 1RM point was tested. The vertical and horizontal coordinates were determined relative to the theoretical maximal force (F0) and the highest loaded SJ (load of 44.5±4.6% 1RM). The goodness of fit of the individual F-V relationship did not differ with or without the 1RM condition, even if the 1RM point was slightly below the curve (−5±5%, P=0.018). The 1RM point can be considered as a point of the F-V relationship. The velocity (0.22±0.05 m.s−1) of the 1RM point corresponded to ~30% of the velocity reached during the highest loaded SJ. The force developed in the 1RM condition was ~16% higher than during the highest loaded SJ and ~11% lower than F0. This finding underlines the difference between F0 and the 1RM condition.

 
  • References

  • 1 Arsac LM, Belli A, Lacour JR. Muscle function during brief maximal exercise: Accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol 1996; 74: 100-106
  • 2 Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand 1974; 91: 385-392
  • 3 Balsalobre-Fernández C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci 2015; 33: 1574-1579
  • 4 Bobbert MF. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?. J Appl Physiol 2012; 112: 1975-1983
  • 5 Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C. A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol 1995; 70: 379-386
  • 6 Braith RW, Graves JE, Leggett SH, Pollock ML. Effect of training on the relationship between maximal and submaximal strength. Med Sci Sports Exerc 1993; 25: 132-138
  • 7 Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci 2016; 34: 1099-1106
  • 8 Cross MR, Brughelli M, Samozino P, Morin J-B. Methods of power-force-velocity profiling during sprint running: A narrative review. Sports Med 2016;
  • 9 Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S. Force–velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur J Appl Physiol 2014; 114: 1703-1714
  • 10 Djuric S, Cuk I, Sreckovic S, Mirkov D, Nedeljkovic A, Jaric S. Selective effects of training against weight and inertia on muscle mechanical properties. Int J Sports Physiol Perform 2016; 11: 927-932
  • 11 Feeney D, Stanhope SJ, Kaminski TW, Machi A, Jaric S. Loaded vertical jumping: Force–velocity relationship, work, and power. J Appl Biomech 2016; 32: 120-127
  • 12 García-Ramos A, Jaric S, Padial P, Feriche B. Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. J Appl Biomech 2016; 32: 178-185
  • 13 Gasser HS, Hill AV. The dynamics of muscular contraction. Proc R Soc B Biol Sci 1924; 96: 398-437
  • 14 Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship?. Int J Sports Med 2014; 36: 143-149
  • 15 González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med 2010; 31: 347-352
  • 16 Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM, Kraemer WJ. Estimation of human power output from vertical jump. J Strength Cond Res 1991; 5: 116-120
  • 17 Harriss D, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 18 Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009; 41: 3-13
  • 19 Izquierdo M, González-Badillo J, Häkkinen K, Ibáñez J, Kraemer W, Altadill A, Eslava J, Gorostiaga E. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med 2006; 27: 718-724
  • 20 Izquierdo M, Häkkinen K, Gonzalez-Badillo J, Ibáñez J, Gorostiaga E. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 2002; 87: 264-271
  • 21 Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med 2015; 36: 699-704
  • 22 Jidovtseff B, Harris NK, Crielaard J-M, Cronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res 2011; 25: 267-270
  • 23 Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin J-B. Effect of countermovement on power-force-velocity profile. Eur J Appl Physiol 2014; 114: 2281-2288
  • 24 Julio UF, Panissa VLG, Franchini E. Prediction of one-repetition maximum from the maximum number of repetitions with submaximal loads in recreationally strength-trained men. Sci Sports 2012; 27: e69-e76
  • 25 Leontijevic B, Pazin N, Kukolj M, Ugarkovic D, Jaric S. Selective effects of weight and inertia on maximum lifting. Int J Sports Med 2013; 34: 232-238
  • 26 Markovic S, Mirkov DM, Knezevic OM, Jaric S. Jump training with different loads: Effects on jumping performance and power output. Eur J Appl Physiol 2013; 113: 2511-2521
  • 27 Morin J-B, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform 2016; 11: 267-272
  • 28 Picerno P, Iannetta D, Comotto S, Donati M, Pecoraro F, Zok M, Tollis G, Figura M, Varalda C, Di Muzio D, Patrizio F, Piacentini MF. 1RM prediction: A novel methodology based on the force-velocity and load-velocity relationships. Eur J Appl Physiol 2016; 116: 2035-2043
  • 29 Rabita G, Dorel S, Slawinski J, Sàez-de-Villarreal E, Couturier A, Samozino P, Morin J-B. Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion: Sprint mechanics in elite athletes. Scand J Med Sci Sports 2015; 25: 583-594
  • 30 Rahmani A, Viale F, Dalleau G, Lacour J-R. Force/velocity and power/velocity relationships in squat exercise. Eur J Appl Physiol 2001; 84: 227-232
  • 31 Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin J-B. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med 2014; 35: 505-510
  • 32 Samozino P, Morin J-B, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech 2008; 41: 2940-2945
  • 33 Samozino P, Morin J-B, Hintzy F, Belli A. Jumping ability: A theoretical integrative approach. J Theor Biol 2010; 264: 11-18
  • 34 Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, Morin J-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running: Simple method to compute sprint mechanics. Scand J Med Sci Sports 2016; 26: 648-658
  • 35 Samozino P, Rejc E, Di Prampero PE, Belli A, Morin J-B. Optimal force-velocity profile in ballistic movements—altius: Citius or fortius?. Med Sci Sports Exerc 2012; 44: 313-322
  • 36 Sánchez-Medina L, Pallarés J, Pérez C, Morán-Navarro R, González-Badillo J. Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open 2017; 1: E80-E88
  • 37 Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med 2010; 31: 123-129
  • 38 Sreckovic S, Cuk I, Djuric S, Nedeljkovic A, Mirkov D, Jaric S. Evaluation of force-velocity and power-velocity relationship of arm muscles. Eur J Appl Physiol 2015; 115: 1779-1787
  • 39 Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR. Muscle architecture and force-velocity relationships in humans. J Appl Physiol 1984; 57: 435-443