Rofo 2018; 190(01): 20-30
DOI: 10.1055/s-0043-120116
Review
© Georg Thieme Verlag KG Stuttgart · New York

Transient Severe Respiratory Motion Artifacts After Application of Gadoxetate Disodium: What We Currently Know

Transiente schwere Atemartefakte nach Gabe von Dinatriumgadoxetat: Was wir derzeit wissen
Lennart Well
,
Julius Matthias Weinrich
,
Gerhard Adam
,
Peter Bannas
Further Information

Publication History

22 June 2017

11 September 2017

Publication Date:
20 November 2017 (online)

Abstract

Background Gadoxetate disodium is an intracellular contrast agent for magnetic resonance imaging (MRI) of the liver. Recent publications revealed that injection of gadoxetate disodium can lead to imaging artifacts due to transient severe motion (TSM) in the arterial phase of contrast-enhanced liver MRI. In this review we present and discuss published frequencies of TSM, contrast injection and image acquisition protocols, potential risk factors, and proposed strategies to avoid or minimize the effects of TSM.

Method Two reviewers independently searched the PubMed search engine for “transient severe motion artifact” and related terms. Reference lists of retrieved articles were also searched. The two reviewers selected in consensus nine studies that reported both frequencies of TSM and potential risk factors. Study data were extracted by both reviewers, and disagreement was resolved by consensus.

Results and Conclusion TSM is caused by impaired breath-hold ability after gadoxetate disodium injection and occurs in 5 – 22 % of patients. The dose of applied contrast agent, repeated exposure to gadoxetate disodium, high BMI and pulmonary disease have been described as potential risk factors for TSM. However, there are only few concordant results on this topic and the pathophysiology of TSM has not been identified. Proposed strategies for the prevention of TSM are slow injection rates and low doses of diluted gadoxetate disodium. Accelerated and free-breathing MRI sequence protocols and breath-hold training may minimize the effects of TSM. Further prospective studies are needed to confirm these strategies and to identify the underlying mechanism of TSM.

Key Points

  • TSM occurs in 5 – 22 % of patients after gadoxetate disodium injection.

  • Potential risk factors of TSM are dose, repeated exposure, BMI, pulmonary disease.

  • The underlying mechanism for TSM has not been identified.

  • Slow injection rates and diluted gadoxetate disodium may prevent TSM.

  • Accelerated image acquisition or free-breathing sequences may mitigate the effects of TSM.

Citation Format

  • Well L, Weinrich JM, Adam G et al. Transient Severe Respiratory Motion Artifacts After Application of Gadoxetate Disodium: What We Currently Know. Fortschr Röntgenstr 2018; 190: 20 – 30

Zusammenfassung

Hintergrund Dinatriumgadoxetat ist ein intrazelluläres Kontrastmittel für die Leberbildgebung in der Magnetresonanztomografie (MRT). In aktuellen Publikationen wurde das Auftreten transienter schwerer Atemartefakte (TSA) nach Gabe von Dinatriumgadoxetat beschrieben, die zur Reduktion der Bildqualität in der arteriellen Konstrastmittelphase führen. In diesem Übersichtsartikel vergleichen wir den Einfluss publizierter Untersuchungsprotokolle und potentieller Risikofaktoren auf die Häufigkeit des Auftretens der TSA. Zudem diskutieren wir vorgeschlagene Strategien zur Vermeidung oder Minimierung der Effekte der TSA.

Methode Diese Übersichtsarbeit basiert auf einer Literaturrecherche der PubMed Datenbank, welche nach „transient severe motion artifact“ und verwandten Begriffen unabhängig voneinander von zwei Autoren durchsucht wurde. Die Literaturverzeichnisse der identifizierten Arbeiten wurden ebenfalls durchsucht. Zwei Autoren wählten gemeinsam neun Arbeiten aus, in denen sowohl die Frequenz der TSA als auch potentielle Risikofaktoren untersucht wurden. Relevante Studiendaten wurden von den Autoren extrahiert, Diskrepanzen der extrahierten Daten wurden im Konsens gelöst.

Ergebnisse und Schlussfolgerungen Die TSA werden durch eine Beeinträchtigung der Atemanhaltefähigkeit nach Gabe von Dinatriumgadoxetat verursacht und treten in 5 – 22 % aller Dinatriumgadoxetat-verstärkten Leber-MRTs auf. Die Kontrastmitteldosis, wiederholte Dinatriumgadoxetat-Exposition, hoher Body Mass Index sowie pulmonale Erkrankungen werden als potentielle Risikofaktoren für das Auftreten der TSA beschrieben. Allerdings finden sich nur wenig übereinstimmende Resultate hinsichtlich der Risikofaktoren, und die ursächliche Pathophysiologie der TSA ist bis heute ungeklärt. Vorgeschlagene Strategien zur Vermeidung der TSA sind niedrige Injektionsraten und Gabe von verdünntem, niedrig dosiertem Dinatriumgadoxetat. Durch kürzere Sequenzen, Aufnahmen ohne Atemstillstand und Atemtraining der Patienten soll der Effekt der TSA minimiert werden. Zukünftige prospektive Studien müssen diese Strategien bestätigen und den zugrundeliegenden Mechanismus für das Auftreten der TSA ermitteln.

Kernaussagen

  • Die Dinatriumgadoxetat-verstärkte Leber-MRT führt in 5 – 22 % zu transienten schweren Atemartefakten.

  • Potentielle Risikofaktoren für TSA sind Kontrastmitteldosis, wiederholte Dinatriumgadoxetat-Gabe, BMI sowie Lungenerkrankungen.

  • Die Ursache für das Auftreten von TSA ist bislang ungeklärt.

  • Niedrige Injektionsraten und verdünntes Dinatriumgadoxetat sollen das Auftreten von TSA vermeiden.

  • Kürzere oder durchgeatmete MRT-Sequenzen sollen den Effekt der TSA minimieren.

 
  • References

  • 1 Bashir MR, Gupta RT, Davenport MS. et al. Hepatocellular carcinoma in a North American population: does hepatobiliary MR imaging with Gd-EOB-DTPA improve sensitivity and confidence for diagnosis?. J Magn Reson Imaging 2013; 37: 398-406
  • 2 Zech CJ, Herrmann KA, Reiser MF. et al. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 2007; 6: 43-52
  • 3 Di Martino M, Marin D, Guerrisi A. et al. Intraindividual comparison of gadoxetate disodium-enhanced MR imaging and 64-section multidetector CT in the Detection of hepatocellular carcinoma in patients with cirrhosis. Radiology 2010; 256: 806-816
  • 4 Muhi A, Ichikawa T, Motosugi U. et al. Diagnosis of colorectal hepatic metastases: comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI. J Magn Reson Imaging 2011; 34: 326-335
  • 5 Tanimoto A, Kuwatsuru R, Kadoya M. et al. Evaluation of gadobenate dimeglumine in hepatocellular carcinoma: results from phase II and phase III clinical trials in Japan. J Magn Reson Imaging 1999; 10: 450-460
  • 6 Davenport MS, Viglianti BL, Al-Hawary MM. et al. Comparison of Acute Transient Dyspnea after Intravenous Administration of Gadoxetate Disodium and Gadobenate Dimeglumine: Effect on Arterial Phase Image Quality. Radiology 2013; 266: 452-461
  • 7 McClellan TR, Motosugi U, Middleton MS. et al. Intravenous Gadoxetate Disodium Administration Reduces Breath-holding Capacity in the Hepatic Arterial Phase: A Multi-Center Randomized Placebo-controlled Trial. Radiology 2017; 282: 361-381
  • 8 Pietryga JA, Burke LMB, Marin D. et al. Respiratory Motion Artifact Affecting Hepatic Arterial Phase Imaging with Gadoxetate Disodium: Examination Recovery with a Multiple Arterial Phase Acquisition. Radiology 2014; 271: 426-434
  • 9 Davenport MS, Bashir MR, Pietryga JA. et al. Dose-Toxicity Relationship of Gadoxetate Disodium and Transient Severe Respiratory Motion Artifact. Am J Roentgenol 2014; 203: 796-802
  • 10 Kim SY, Park SH, Wu EH. et al. Transient Respiratory Motion Artifact During Arterial Phase MRI With Gadoxetate Disodium: Risk Factor Analyses. Am J Roentgenol 2015; 204: 1220-1227
  • 11 Hayashi T, Saitoh S, Tsuji Y. et al. Influence of Gadoxetate Disodium on Oxygen Saturation and Heart Rate during Dynamic Contrast-enhanced MR Imaging. Radiology 2015; 276: 756-765
  • 12 Bashir MR, Castelli P, Davenport MS. et al. Respiratory Motion Artifact Affecting Hepatic Arterial Phase MR Imaging with Gadoxetate Disodium Is More Common in Patients with a Prior Episode of Arterial Phase Motion Associated with Gadoxetate Disodium. Radiology 2015; 274: 141-148
  • 13 Motosugi U, Bannas P, Bookwalter CA. et al. An Investigation of Transient Severe Motion Related to Gadoxetic Acid–enhanced MR Imaging. Radiology 2016; 279: 93-102
  • 14 Shah MR, Flusberg M, Paroder V. et al. Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents. Clin Imaging 2017; 41: 23-27
  • 15 Well L, Rausch VH, Adam G. et al. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution. Rofo 2017 [Epub ahead of print]
  • 16 Motosugi U. Gadoxetic acid-induced acute transient dyspnea: the perspective of Japanese radiologists. Magn Reson Med Sci MRMS an Off J Japan Soc Magn Reson Med 2015; 14: 163-164
  • 17 Luetkens JA, Kupczyk PA, Doerner J. et al. Respiratory motion artefacts in dynamic liver MRI: a comparison using gadoxetate disodium and gadobutrol. Eur Radiol 2015; 25: 3207-3213
  • 18 Tamada T, Ito K, Sone T. et al. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging 2009; 29: 636-640
  • 19 Weinrich JM, Well L, Bannas P. Optimized detection and characterization of liver metastases. Radiologe 2017; 57: 373-381
  • 20 Reimer P, Vosshenrich R. Kontrastmittel in der Radiologie. Radiologe 2013; 53: 153-164
  • 21 Bae KT. Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 2003; 227: 809-816
  • 22 Brismar TB, Dahlstrom N, Edsborg N. et al. Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers. Acta Radiol 2009; 50: 709-715
  • 23 Ringe KI, Husarik DB, Sirlin CB. et al. Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol 2010; 195: 13-28
  • 24 Davenport MS, Caoili EM, Kaza RK. et al. Matched within-Patient Cohort Study of Transient Arterial Phase Respiratory Motion–related Artifact in MR Imaging of the Liver: Gadoxetate Disodium versus Gadobenate Dimeglumine. Radiology 2014; 272: 123-131
  • 25 Zech CJ, Vos B, Nordell A. et al. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 2009; 44: 305-310
  • 26 Kim YK, Lin WC, Sung K. et al. Reducing Artifacts during Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: Dilution Method versus Reduced Injection Rate. Radiology 2017; 283: 429-437
  • 27 Polanec SH, Bickel H, Baltzer PAT. et al. Respiratory motion artifacts during arterial phase imaging with gadoxetic acid: Can the injection protocol minimize this drawback?. J Magn Reson Imaging 2017; 46: 1107-1114
  • 28 Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MR imaging. Radiol Clin North Am 2014; 52: 637-656
  • 29 Motosugi U, Bannas P, Hernando D. et al. Intraindividual Crossover Comparison of Gadoxetic Acid Dose for Liver MRI in Normal Volunteers. Magn Reson Med Sci 2016; 15: 60-72
  • 30 Park YS, Lee CH, Yoo JL. et al. Hepatic Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: Analysis of Respiratory Patterns and Their Effect on Image Quality. Invest Radiol 2016; 51: 127-133
  • 31 Davenport MS, Malyarenko DI, Pang Y. et al. Effect of Gadoxetate Disodium on Arterial Phase Respiratory Waveforms Using a Quantitative Fast Fourier Transformation-Based Analysis. Am J Roentgenol 2017; 208: 328-336
  • 32 Kim KW, Lee JM, Jeon YS. et al. Free-breathing dynamic contrast-enhanced MRI of the abdomen and chest using a radial gradient echo sequence with K-space weighted image contrast (KWIC). Eur Radiol 2013; 23: 1352-1360
  • 33 Kaltenbach B, Roman A, Polkowski C. et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. Eur J Radiol 2017; 86: 26-32
  • 34 Salmani Rahimi M, Korosec FR, Wang K. et al. Combined dynamic contrast-enhanced liver MRI and MRA using interleaved variable density sampling. Magn Reson Med 2015; 73: 973-983
  • 35 McKenzie CA, Lim D, Ransil BJ. et al. Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 2004; 230: 589-594
  • 36 Vogt FM, Antoch G, Hunold P. et al. Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity. J Magn Reson Imaging 2005; 21: 376-382
  • 37 Gutzeit A, Matoori S, Froehlich J. et al. Reduction in Respiratory Motion Artifacts on Gadoxetate Acid–enhanced MR Images after Training Technicians. Radiology 2016; 279: 981-982
  • 38 Gutzeit A, Matoori S, Froehlich JM. et al. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command. Eur Radiol 2016; 26: 2714-2722
  • 39 Fahlenkamp UL, Wagner M, Nickel D. et al. Novel Dynamic Hepatic Magnetic Resonance Imaging Strategy Using Advanced Parallel Acquisition, Rhythmic Breath-Hold Technique, and Gadoxetate Disodium Enhancement. Invest Radiol 2016; 51: 33-40