RSS-Feed abonnieren
DOI: 10.1055/s-0043-122183
Kardiopulmonale Komorbiditäten
Publikationsverlauf
Publikationsdatum:
02. Januar 2018 (online)
Besonders bei älteren Patienten sind kardiopulmonale Komorbiditäten häufig – und die Prognose ist schlecht. Pulmonale Erkrankungen wie z. B. COPD oder die pulmonale Hypertonie beeinflussen das Herz auf vielfältige Weise. Doch die physiologische Achse zwischen linkem Herz, Lunge und rechtem Herz führt auch dazu, dass Herzerkrankungen Lungenprobleme hervorrufen. Die kardiopulmonale Differenzialdiagnostik hat deshalb einen hohen klinischen Stellenwert.
-
Kardiopulmonale Komorbiditäten sind häufig, treten insbesondere in der alternden Bevölkerung auf und haben eine schlechte Prognose.
-
Insbesondere eine systemische Inflammation – u. a. durch Tabakrauch – bedingt die Komorbidität von COPD und Atherosklerose.
-
Die Ursachen für eine pulmonale Hypertonie sind vielschichtig und die Therapien gegen die zugrunde liegenden Ursachen gerichtet. Die häufigste Ursache ist eine Linksherzinsuffizienz.
-
Eine umfassende und zielgerichtete Differenzialdiagnostik in einem Expertenzentrum ist eine wichtige Voraussetzung für eine adäquate Therapie kardiopulmonaler Komorbiditäten.
-
Patienten mit Herzinsuffizienz und/oder abgelaufenem Myokardinfarkt sollten auch bei einer COPD Betablocker erhalten.
-
Bei COPD-Patienten sollte die Therapie mit β2-Mimetika bei kardiovaskulären Komorbiditäten soweit wie möglich vermieden werden.
-
Literatur
- 1 Horton R. The neglected epidemic of chronic disease. Lancet 2005; 366: 1514
- 2 Rutten FH, Cramer MJ, Lammers JW. et al. Heart failure and chronic obstructive pulmonary disease: An ignored combination?. Eur J Heart Fail 2006; 8: 706-711
- 3 Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J 2007; 30: 616-622
- 4 Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest 2005; 127: 1952-1959
- 5 Ukena C, Mahfoud F, Kindermann M. et al. The cardiopulmonary continuum systemic inflammation as ‘common soil’ of heart and lung disease. Int J Cardiol 2010; 145: 172-176
- 6 Le Jemtel TH, Padeletti M, Jelic S. . Diagnostic and therapeutic challenges in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure J Am Coll Cardiol 2007; 49: 171-180
- 7 Hawkins NM, Petrie MC, Jhund PS. et al. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 2009; 11: 130-139
- 8 World Health Organization. Chronic cor pulmonale. Report of an expert committee. World Health Organ Tech Rep Ser 1961; 213: 35
- 9 Budev MM, Arroliga AC, Wiedemann HP. et al. Cor pulmonale: an overview. Semin Respir Crit Care Med 2003; 24: 233-244
- 10 Fabbri LM, Luppi F, Beghe B. et al. Complex chronic comorbidities of COPD. Eur Respir J 2008; 31: 204-212
- 11 Galiè N, Hoeper MM, Humbert M. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493-2537
- 12 Vachiery J-L, Adir Y, Barbera JA. et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 2013; 62: D100-D108
- 13 Galie N, Humbert M, Vachiery JL. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2015; 46: 903-975
- 14 Güder G, Rutten FH. Comorbidity of heart failure and chronic obstructive pulmonary disease: more than coincidence. Curr Heart Fail Rep 2014; 11: 337-346
- 15 Chen W, Thomas J, Sadatsafavi M. et al. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Resp Med 2015; 3: 631-639
- 16 Zangiabadi A, De Pasquale CG, Sajkov D. Pulmonary hypertension and right heart dysfunction in chronic lung disease. Biomed Res Int 2014; 2014: 739674
- 17 Almagro P, Lapuente A, Pareja J. et al. Underdiagnosis and prognosis of chronic obstructive pulmonary disease after percutaneous coronary intervention: a prospective study. Int J Chron Obstruct Pulmon Dis 2015; 10: 1353-1361
- 18 Fiore MC, Baker TB. Clinical practice. Treating smokers in the health care setting. New Engl J Med 2011; 365: 1222-1231
- 19 Mancini GB, Etminan M, Zhang B. et al. Reduction of morbidity and mortality by statins, angiotensinconverting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol 2006; 47: 2554-2560
- 20 Salpeter SR, Ormiston TM, Salpeter EE. Cardioselective beta-blockers in patients with reactive airway disease: a meta-analysis. Ann Int Med 2002; 137: 715-725
- 21 Salpeter SR, Ormiston TM, Salpeter EE. Metaanalysis: respiratory tolerance to regular beta2-agonist use in patients with asthma. Ann Int Med 2004; 140: 802-813
- 22 Callaerts-Vegh Z, Evans KL, Dudekula N. et al. Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 2004; 101: 4948-4953
- 23 Nguyen LP, Lin R, Parra S. et al. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci USA 2009; 106: 2435-2440
- 24 Gottlieb SS, McCarter RJ, Vogel RA. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. New Engl J Med 1998; 339: 489-497
- 25 Salpeter SR, Ormiston TM, Salpeter EE. Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. Chest 2004; 125: 2309-2321
- 26 Daniels CE, Yi ES, Ryu JH. Autopsy findings in 42 consecutive patients with idiopathic pulmonary fibrosis. Eur Resp J 2008; 32: 170-174
- 27 Hubbard RB, Smith C, Le Jeune I. et al. The association between idiopathic pulmonary fibrosis and vascular disease. Am J Respir Crit Care Med 2008; 178: 1257-1261
- 28 Izbicki G, Ben-Dor I, Shitrit D. et al. The prevalence of coronary artery disease in end-stage pulmonary disease: is pulmonary fibrosis a risk factor?. Resp Med 2009; 103: 1346-1349
- 29 Kizer JR, Zisman DA, Blumenthal NP. et al. Association between pulmonary fibrosis and coronary artery disease. Arch Intern Med 2004; 164: 551-556
- 30 Epstein FH, Ross R. Atherosclerosis – an inflammatory disease. New Engl J Med 1999; 340: 115-126
- 31 Lettieri CJ, Nathan SD, Barnett SD. et al. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006; 129: 746-752
- 32 Tapson VF. Acute pulmonary embolism. New Engl J Med 2008; 358: 1037-1052
- 33 Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 2008; 4: 49
- 34 Humbert M, Ghofrani H-A. The molecular targets of approved treatments for pulmonary arterial hypertension. Thorax 2015;
- 35 Jenkins D. Pulmonary endarterectomy: the potentially curative treatment for patients with chronic thromboembolic pulmonary hypertension. Eur Resp Rev 2015; 24: 263-271
- 36 Hoeper MM. Pharmacological therapy for patients with chronic thromboembolic pulmonary hypertension. Eur Resp Rev 2015; 24: 272-282
- 37 Handoko ML, de Man FS, Allaart CP. et al. Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart. Eur Resp Rev 2010; 19: 72-82
- 38 Lévy P, Ryan S, Oldenburg O. et al. Sleep apnoea and the heart. Eur Resp Rev 2013; 22: 333-352
- 39 Hawryłkiewicz I, Sliwiński P, Górecka D. et al. Pulmonary haemodynamics in patients with OSAS or an overlap syndrome. Monaldi Arch Chest Dis 2004; 61: 148-152
- 40 Costanzo MR, Khayat R, Ponikowski P. et al. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure. J Am Coll Cardiol 2015; 65: 72-84
- 41 Bradley TD, Logan AG, Kimoff RJ. et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med 2005; 353: 2025-2033
- 42 Arzt M, Floras JS, Logan AG. et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation 2007; 115: 3173-3180
- 43 Cowie MR, Woehrle H, Wegscheider K. et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. New Engl J Med 2015; 373: 1095-1105
- 44 Held M, Rosenkranz S. Pulmonary hypertension with lung and left-sided heart diseases. Pneumologe 2015; 12: 410-416
- 45 Park SJ, Park J-H, Lee HS. et al. Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc Imaging 2015; 8: 161-169
- 46 Ghio S, Gavazzi A, Campana C. et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001; 37: 183-188
- 47 Melenovsky V, Hwang SJ, Lin G. et al. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 2014; 35: 3452-3462
- 48 Magne J, Pibarot P, Sengupta PP. et al. Pulmonary hypertension in valvular disease. JACC Cardiovasc Imaging 2015; 8: 83-99
- 49 La Gerche A, Roberts TJ. Straining the RV to predict the future. JACC Cardiovasc Imaging 2015; 8: 170-171
- 50 Mohammed SF, Hussain I, AbouEzzeddine OF. et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 2014; 130: 2310-2320
- 51 Guazzi M, Naeije R, Arena R. et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest 2015; 148: 226-234
- 52 Kusunose K, Popović ZB, Motoki H. et al. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging 2013; 6: 167-176
- 53 Lancellotti P, Magne J, Dulgheru R. et al. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol 2015; 115: 1454-1461
- 54 Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 2012; 33: 1750-1757
- 55 Lam CSP, Roger VL, Rodeheffer RJ. et al. Pulmonary hypertension in heart failure with preserved ejection fraction. J Am Coll Cardiol 2009; 53: 1119-1126
- 56 Hoendermis ES, Liu LCY, Hummel YM. et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 2015; 36: 2565-2573
- 57 McMurray JJ, Adamopoulos S, Anker SD. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J of Heart Fail 2012; 14: 803-869
- 58 Asgar AW, Mack MJ, Stone GW. Secondary mitral regurgitation in heart failure. J Am Coll Cardiol 2015; 65: 1231-1248
- 59 Gaemperli O, Moccetti M, Surder D. et al. Acute haemodynamic changes after percutaneous mitral valve repair: relation to mid-term outcomes. Heart 2012; 98: 126-132
- 60 Upadhyay GA, Chatterjee NA, Kandala J. et al. Assessing mitral regurgitation in the prediction of clinical outcome after cardiac resynchronization therapy. Heart Rhythm 2015; 12: 1201-1208
- 61 Malouf JF, Enriquez-Sarano M, Pellikka PA. et al. Severe pulmonary hypertension in patients with severe aortic valve stenosis: clinical profile and prognostic implications. J Am Coll Cardiol 2002; 40: 789-795
- 62 Pai RG, Varadarajan P, Kapoor N. et al. Aortic valve replacement improves survival in severe aortic stenosis associated with severe pulmonary hypertension. Ann Thorac Surg 2007; 84: 80-85
- 63 Sinning JM, Hammerstingl C, Chin D. et al. Decrease of pulmonary hypertension impacts on prognosis after transcatheter aortic valve replacement. EuroIntervention 2014; 9: 1042-1049
- 64 Maoqin S, Guoxiang H, Zhiyuan S. et al. The clinical and hemodynamic results of mitral balloon valvuloplasty for patients with mitral stenosis complicated by severe pulmonary hypertension. Eur J Int Med 2005; 16: 413-418
- 65 Ward C, Hancock BW. Extreme pulmonary hypertension caused by mitral valve disease. Natural history and results of surgery. British Heart J 1975; 37: 74-78
- 66 The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Vahanian A, Alfieri O, Andreotti F. et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 2012; 33: 2451-2496