Subscribe to RSS
DOI: 10.1055/s-0043-122601
Repetitive Maturation of Oocytes From Non-Stimulated Xenografted Ovarian Tissue From a Prepubertal Patient Indicating the Independence of Human Ovarian Tissue
Wiederholte Reifung von Eizellen in nicht stimuliertem xenotransplantiertem Ovargewebe eines präpubertären Mädchens zeigt die Eigenständigkeit von menschlichem OvargewebePublication History
received 05 October 2017
revised 07 November 2017
accepted 08 November 2017
Publication Date:
18 December 2017 (online)
Abstract
Introduction Modern anti-cancer strategies have distinctly increased survival rates; nevertheless, often accompanied by sterility. Currently, the only option for preserving fertility in prepubertal females is to cryopreserve ovarian tissue and re-transplant frozen-thawed tissue to restore fertility after treatment. Our aim was to report the occurrence of repetitive antral follicle formation and oocyte maturation in a prepubescent ovarian tissue xenograft without exogenous hormone stimulation.
Material and Methods Frozen-thawed ovarian tissue from a 6-year-old patient suffering from nephroblastoma was xenotransplanted in oophorectomized severe combined immunodeficiency (SCID) mice to evaluate follicle development.
Ergebnisse Repetitive follicle development to the antral stage occurred in the same xenograft of prepubertal ovarian tissue without exogenous hormone administration; 37 days after retrieving a maturing oocyte (this first retrieval has been previously published), another, completely mature oocyte was harvested from the xenograft. Subsequent histological evaluation of the grafted tissue showed primordial follicles, nearly all stages of developing follicles, as well as large atretic ones. Many clusters with dormant primordial follicles were also present.
Conclusion Xenotransplanted prepubertal ovarian tissue has the potential for repetitive oocyte retrieval cycles without administering exogenous hormones. The results indicate that the human ovarian tissue might be able to synchronize the hypothalamus-hypophysis-axes of the mouse to the physiological human cycle; this should be investigated in future studies.
Zusammenfassung
Einleitung Moderne Krebsbekämpfungsstrategien haben zu einer deutlichen Steigerung der Überlebensraten geführt, was jedoch oft mit Sterilität einhergeht. Um die Fertilität präpubertärer Mädchen zu erhalten, besteht die einzige Option zurzeit aus der Kryokonservierung von Ovargewebe, gefolgt von einer Retransplantation des gefrorenen Eierstockgewebes nach Abschluss der onkologischen Behandlung, um die Fertilität wiederherzustellen. Unser Ziel war es, einen Nachweis zu führen über eine wiederholte Bildung antraler Follikel und Oozytenreifung in einem Xenotransplantat von präpubertärem Eierstockgewebe ohne exogene hormonelle Stimulation.
Material und Methoden Eingefrorenes Eierstockgewebe, das einem an einem Nephroblastom erkrankten 6-jährigen Mädchen entnommen wurde, wurde in oophorektomierten Mäusen mit SCID (schwerem kombinierten Immundefekt) xenotransplantiert, die anschließende Follikelreifung wurde evaluiert.
Ergebnisse Es folgte eine wiederholte Follikelbildung bis zum antralen Stadium in ebendiesem Xenotransplantat von präpubertärem Ovargewebe ohne exogene hormonelle Stimulation; 37 Tage nach der Entnahme einer heranreifenden Eizelle (weitergehende Daten zu dieser ersten Oozytenentnahme wurden bereits veröffentlicht), konnte eine weitere ausgereifte Eizelle dem Xenotransplantat entnommen werden. Eine anschließende histologische Untersuchung des transplantierten Gewebes zeigte sowohl Primordialfollikel und Follikel fast aller Entwicklungsstufen wie auch große atretische Follikel. Es waren also mehrere Ansammlungen ruhender Primordialfollikel vorhanden.
Schlussfolgerung Xenotransplantiertes präpubertäres Ovargewebe hat das Potenzial, wiederholt zyklisch Eizellen zur Entnahme zu generieren, auch ohne die zusätzliche Gabe exogener Hormone. Dieses Ergebnis zeigt, dass menschliches Eierstockgewebe möglicherweise in der Lage sein könnte, die Hypothalamus-Hypophysen-Achse der Maus mit den menschlichen physiologischen Zyklen zu synchronisieren. Dieser Frage sollte in zukünftigen Studien nachgegangen werden.
Key words
fertility preservation - ovarian tissue cryopreservation - prepubertal ovarian tissue - xenotransplantation - metaphase II oocyteSchlüsselwörter
Fertilitätserhalt - Kryokonservierung von Eierstockgewebe - präpubertäres Ovargewebe - Xenotransplantation - Metaphase-II-Oozyte* These authors contributed equally to this work.
-
References
- 1 Jadoul P, Dolmans M-M, Donnez J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed?. Hum Reprod Update 2010; 16: 617-630
- 2 Song Y, Sharp R, Lu F. et al. The future potential of cryopreservation for assisted reproduction. Cryobiology 2010; 60: S60-S65
- 3 Anderson RA, Wallace WH. Fertility preservation in girls and young women. Clin Endocrinol (Oxf) 2011; 75: 409-419
- 4 Dittrich R, Lotz L, Keck G. et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97: 387-390
- 5 Findeklee S, Lotz L, Heusinger K. et al. Fertility protection in female oncology patients: how should patients be counseled?. Geburtsh Frauenheilk 2015; 75: 1243-1249
- 6 Lintern-Moore S, Peters H, Moore GP. et al. Follicular development in the infant human ovary. J Reprod Fertil 1974; 39: 53-64
- 7 Peters H, Byskov AG, Grinsted J. Follicular growth in fetal and prepubertal ovaries of humans and other primates. Clin Endocrinol Metab 1978; 7: 469-485
- 8 Fabbri R, Vicenti R, Macciocca M. et al. Cryopreservation of ovarian tissue in pediatric patients. Obstet Gynecol Int 2012; 2012: 910698
- 9 Luyckx V, Scalercio S, Jadoul P. et al. Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil Steril 2013; 100: 1350-1357
- 10 Poirot C, Abirached F, Prades M. et al. Induction of puberty by autograft of cryopreserved ovarian tissue. Lancet 2012; 379: 588
- 11 Ernst E, Kjaersgaard M, Birkebaek NH. et al. Case report: stimulation of puberty in a girl with chemo- and radiation therapy induced ovarian failure by transplantation of a small part of her frozen/thawed ovarian tissue. Eur J Cancer 2013; 49: 911-914
- 12 Demeestere I, Simon P, Dedeken L. et al. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod 2015; 30: 2107-2109
- 13 Jadoul P, Guilmain A, Squifflet J. et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod 2017; 32: 1046-1054
- 14 Donnez J, Dolmans MM, Pellicer A. et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril 2013; 99: 1503-1513
- 15 Provoost V, Tilleman K, DʼAngelo A. et al. Beyond the dichotomy: a tool for distinguishing between experimental, innovative and established treatment. Hum Reprod 2014; 29: 413-417
- 16 Beckmann MW, Dittrich R, Findeklee S. et al. Surgical aspects of ovarian tissue removal and ovarian tissue transplantation for fertility preservation. Geburtsh Frauenheilk 2016; 76: 1057-1064
- 17 Lotz L, Liebenthron J, Nichols-Burns SM. et al. Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant. Reprod Biol Endocrinol 2014; 12: 41
- 18 Isachenko V, Isachenko E, Reinsberg J. et al. Cryopreservation of human ovarian tissue: effect of spontaneous and initiated ice formation. Reprod Biomed Online 2008; 16: 336-345
- 19 Weissman A, Gotlieb L, Colgan T. et al. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod 1999; 60: 1462-1467
- 20 Dittrich R, Lotz L, Fehm T. et al. Xenotransplantation of cryopreserved human ovarian tissue–a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril 2015; 103: 1557-1565
- 21 Maltaris T, Kaya H, Hoffmann I. et al. Comparison of xenografting in SCID mice and LIVE/DEAD assay as a predictor of the developmental potential of cryopreserved ovarian tissue. In Vivo 2006; 20: 11-16
- 22 Lotz L, Montag M, van der Ven H. et al. Xenotransplantation of cryopreserved ovarian tissue from patients with ovarian tumors into SCID mice–no evidence of malignant cell contamination. Fertil Steril 2011; 95: 2612-2614.e1
- 23 Greve T, Clasen-Linde E, Andersen MT. et al. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood 2012; 120: 4311-4316
- 24 Dolmans MM, Marinescu C, Saussoy P. et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood 2010; 116: 2908-2914
- 25 Picton HM, Harris SE, Muruvi W. et al. The in vitro growth and maturation of follicles. Reprod Suppl 2008; 136: 703-715
- 26 Telfer EE, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med 2011; 29: 15-23
- 27 Telfer EE, McLaughlin M. Strategies to support human oocyte development in vitro. Int J Dev Biol 2012; 56: 901-907
- 28 Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril 2013; 99: 1523-1533
- 29 Revel A, Revel-Vilk S, Aizenman E. et al. At what age can human oocytes be obtained?. Fertil Steril 2009; 92: 458-463
- 30 Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12: 2323-2332
- 31 Laronda MM, Rutz AL, Xiao S. et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8: 15261
- 32 Lotz L, Schneider H, Hackl J. et al. Does stimulation with human gonadotropins and gonadotropin-releasing hormone agonist enhance and accelerate the developmental capacity of oocytes in human ovarian tissue xenografted into severe combined immunodeficient mice?. Fertil Steril 2014; 101: 1477-1484
- 33 Gook DA, Edgar DH, Borg J. et al. Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum Reprod 2003; 18: 1772-1781
- 34 Soleimani R, Heytens E, Van den Broecke R. et al. Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle. Hum Reprod 2010; 25: 1458-1470
- 35 Kim SS, Kang HG, Kim NH. et al. Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Hum Reprod 2005; 20: 2502-2508
- 36 Gook DA, Edgar DH, Borg J. et al. Diagnostic assessment of the developmental potential of human cryopreserved ovarian tissue from multiple patients using xenografting. Hum Reprod 2005; 20: 72-78
- 37 Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod 1986; 1: 81-87
- 38 Maltaris T, Beckmann MW, Mueller A. et al. Significant loss of primordial follicles after prolonged gonadotropin stimulation in xenografts of cryopreserved human ovarian tissue in severe combined immunodeficient mice. Fertil Steril 2007; 87: 195-197
- 39 Wang Y, Chang Q, Sun J. et al. Effects of HMG on revascularization and follicular survival in heterotopic autotransplants of mouse ovarian tissue. Reprod Biomed Online 2012; 24: 646-653
- 40 Raith-Paula E, Frank-Hermann P, Freundl G. et al. Natürliche Familienplanung heute: Modernes Zykluswissen für Beratung und Anwendung. 4. Aufl.. Heidelberg: Springer Verlag; 2008
- 41 Hau J, Svendsen P, Schapiro S. Handbook of laboratory Animal Science, Animal Models. Boca Raton, Florida: CRC Press; 1994