Subscribe to RSS
DOI: 10.1055/s-0043-122677
Reaktion der Endothelzellen auf kurzzeitig physiologisch erhöhte hydrostatische Drücke und oxidativen Stress in vitro
Endothelial Cell Reaction to Elevated Hydrostatic Pressure and Oxidative Stress in VitroPublication History
eingereicht 18 August 2017
akzeptiert 06 November 2017
Publication Date:
11 April 2018 (online)
Zusammenfassung
Hintergrund Im Rahmen der Pathogenese des Glaukoms wird die endotheliale Dysfunktion zunehmend diskutiert. Peripapilläre Blutungen sind diagnostisch wegweisend. Die Korrelation von Glaukomerkrankungen mit vaskulärem Dysregulationssyndrom ist eindeutig. Ziel dieser Studie ist es, die genaue Reaktion der Endothelzellen auf erhöhten hydrostatischen und oxidativen Stress zu untersuchen.
Material und Methoden In vitro wurden primär dissoziierte BMECs (brain microvascular endothelial cells) für 3 Tage normalem und leicht erhöhtem hydrostatischem Druck von 60 und 120 mmHg in einer Druckkammer ausgesetzt. Zusätzlich wurden sowohl druckbelastete als auch nicht druckbelastete Zellen oxidativem Stress in Form von geringen Konzentrationen H2O2 ausgesetzt. Ein Live/Dead Assay wurde durchgeführt, um die Zellviabilität zu messen. Morphologisch wurden die Zellen mit immunhistochemischer Aktinfärbung beurteilt.
Ergebnisse Interessanterweise zeigten die Endothelzellen sowohl unter 60 mmHg als auch unter 120 mmHg kein vermehrtes Absterben im Vergleich zu den Zellen ohne Belastung. Auch morphologisch zeigten sich keine großen Unterschiede. Gegenüber oxidativem Stress wurden alle Zellen schon bei kleinen Mengen geschädigt. Keinen Unterschied konnte man zwischen oxidativem Stress ohne vorherige Druckbelastung und oxidativem Stress mit vorheriger Druckbelastung von 120 mmHg für 3 Tage feststellen.
Schlussfolgerung Wir konnten keinen direkten Effekt in Form von vermehrtem Zelluntergang der Endothelzellen auf erhöhten hydrostatischen Druck feststellen. Allerdings zeigt die Reaktion auf die geringen Konzentrationen von oxidativem Stress, dass die Zellen im Rahmen der Pathogenese des Glaukoms doch in Mitleidenschaft gezogen werden. Der oxidative Stress scheint hier eine besondere Rolle zu spielen.
Abstract
Introduction Endothelial dysfunction has become a strongly discussed factor regarding glaucoma pathogenesis. In addition to peripapillary bleedings as signs of vascular damage, there is a definite correlation between glaucoma and vascular dysregulation syndrome. The aim of this study was to evaluate endothelial cell reaction to moderately elevated hydrostatic pressure and oxidative stress in vitro.
Methods In vitro, primarily dissociated brain microvascular endothelial cells (BMECs) were exposed to moderately elevated hydrostatic pressure (60 and 120 mmHg) in a special pressure chamber. Additionally, cells primarily exposed to pressure, and cells not exposed to pressure, were incubated with low amounts of H2O2. A live/dead assay was performed to evaluate cell viability. Immunohistochemical staining against actin was used for morphological evaluation.
Results Neither 60 nor 120 mmHg of elevated pressure had a viability changing effect on primary endothelial cells. Secondary, no big morphological changes could be discovered. However, against a low concentration of oxidative stress, BMECs showed high vulnerability. A difference in reaction to cells stressed with high pressure before could not be shown.
Conclusion Direct effects, in terms of higher vulnerability or morphological changes of moderately elevated high pressure on endothelial cells, could not be shown. However, the reaction to low amounts of oxidative stress indicates the involvement of endothelial cells in the pathogenesis of glaucoma and the special role of oxidative stress when referring to endothelial dysfunction in glaucomatous disease.
-
Literatur
- 1 Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363: 1711-1720 doi:10.1016/S0140-6736(04)16257-0
- 2 [Anonymous] Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 1998; 126: 487-497
- 3 Werner E. Progressive normal-tension glaucoma. I. Analysis. J Glaucoma 1996; 5: 422-426
- 4 Sycha T, Vass C, Findl O. et al. Interventions for normal tension glaucoma. Cochrane Database Syst Rev 2003; (04) CD002222 doi:10.1002/14651858.cd002222
- 5 Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol 1991; 111: 585-588
- 6 Su WW, Cheng ST, Ho WJ. et al. Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology 2008; 115: 1173-1178.e1 doi:10.1016/j.ophtha.2007.10.026
- 7 Su WW, Cheng ST, Hsu TS. et al. Abnormal flow-mediated vasodilation in normal-tension glaucoma using a noninvasive determination for peripheral endothelial dysfunction. Invest Ophthalmol Vis Sci 2006; 47: 3390-3394 doi:10.1167/iovs.06-0024
- 8 Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 1998; 17: 267-289
- 9 Fan N, Wang P, Tang L. et al. Ocular blood flow and normal tension glaucoma. Biomed Res Int 2015; 2015: 308505 doi:10.1155/2015/308505
- 10 Cursiefen C, Wisse M, Cursiefen S. et al. Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol 2000; 129: 102-104
- 11 Wang JJ, Mitchell P, Smith W. Is there an association between migraine headache and open-angle glaucoma? Findings from the Blue Mountains Eye Study. Ophthalmology 1997; 104: 1714-1719
- 12 Ghanem AA, Elewa AM, Arafa LF. Endothelin-1 and nitric oxide levels in patients with glaucoma. Ophthalmic Res 2011; 46: 98-102 doi:10.1159/000323584
- 13 Kaiser HJ, Flammer J, Wenk M. et al. Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes. Graefes Arch Clin Exp Ophthalmol 1995; 233: 484-488
- 14 Thanos S, Naskar R. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Exp Eye Res 2004; 79: 119-129 doi:10.1016/j.exer.2004.02.005
- 15 Rigosi E, Ensini M, Bottari D. et al. Loss of retinal capillary vasoconstrictor response to Endothelin-1 following pressure increments in living isolated rat retinas. Exp Eye Res 2010; 90: 33-40 doi:10.1016/j.exer.2009.09.006
- 16 Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999; 43: 293-320
- 17 Jonas JB, Martus P, Budde WM. et al. Morphologic predictive factors for development of optic disc hemorrhages in glaucoma. Invest Ophthalmol Vis Sci 2002; 43: 2956-2961
- 18 Mitchell P, Leung H, Wang JJ. et al. Retinal vessel diameter and open-angle glaucoma: the Blue Mountains Eye Study. Ophthalmology 2005; 112: 245-250 doi:10.1016/j.ophtha.2004.08.015
- 19 Wang S, Xu L, Wang Y. et al. Retinal vessel diameter in normal and glaucomatous eyes: the Beijing eye study. Clin Experiment Ophthalmol 2007; 35: 800-807 doi:10.1111/j.1442-9071.2007.01627.x
- 20 Gao J, Liang Y, Wang F. et al. Retinal vessels change in primary angle-closure glaucoma: the Handan Eye Study. Sci Rep 2015; 5: 9585 doi:10.1038/srep09585
- 21 Mozaffarieh M, Grieshaber MC, Flammer J. Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 2008; 14: 224-233
- 22 Perriere N, Demeuse P, Garcia E. et al. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 2005; 93: 279-289 doi:10.1111/j.1471-4159.2004.03020.x
- 23 Wax MB, Tezel G, Kobayashi S. et al. Responses of different cell lines from ocular tissues to elevated hydrostatic pressure. Br J Ophthalmol 2000; 84: 423-428
- 24 McMullen S, Maggio E, Millard N. et al. Development and verification of a hydrostatic pressure chamber for determining the effect of pressure on liver progenitor cells. Biomed Sci Instrum 2014; 50: 68-76
- 25 Park WH. The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. Int J Mol Med 2013; 31: 471-476 doi:10.3892/ijmm.2012.1215
- 26 Waxman AB, Mahboubi K, Knickelbein RG. et al. Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. Am J Respir Cell Mol Biol 2003; 29: 513-522 doi:10.1165/rcmb.2002-0044OC
- 27 Huang GD, Zhong XF, Deng ZY. et al. Proteomic analysis of ginsenoside Re attenuates hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells. Food Funct 2016; 7: 2451-2461 doi:10.1039/C6FO00123H
- 28 Müller-Marschhausen K, Waschke J, Drenckhahn D. Physiological hydrostatic pressure protects endothelial monolayer integrity. Am J Physiol Cell Physiol 2008; 294: C324-C332 doi:10.1152/ajpcell.00319.2007
- 29 Bourns B, Franklin S, Cassimeris L. et al. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly, and actin organization. Cell Motil Cytoskeleton 1988; 10: 380-390 doi:10.1002/cm.970100305
- 30 Crenshaw HC, Allen JA, Skeen V. et al. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells. Exp Cell Res 1996; 227: 285-297 doi:10.1006/excr.1996.0278