Pneumologie 2018; 72(07): 493-502
DOI: 10.1055/s-0043-122961
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Pulmonale Immunität bei Tuberkulose

Pulmonary Immune Mechanisms in Tuberculosis
C. Herzmann
1   Forschungszentrum Borstel, Klinisches Studienzentrum, Borstel
,
T. Dallenga
2   Forschungszentrum Borstel, Zelluläre Mikrobiologie, Borstel
,
U. Kalinke
3   Institut für Experimentelle Infektionsforschung, TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, eine Gemeinschaftseinrichtung von der Medizinischen Hochschule Hannover und dem Helmholtz-Zentrum für Infektionsforschung, Hannover
› Author Affiliations
Further Information

Publication History

eingereicht16 August 2017

akzeptiert nach Revision15 November 2017

Publication Date:
21 December 2017 (online)

Zusammenfassung

Tuberkulose wird durch Inhalation von bakterienhaltigen Aerosolen übertragen und 75 % der Erkrankungen betreffen die Lunge. Die Immunprozesse zwischen Exposition und Krankheitsentwicklung sind großenteils auf die Lunge beschränkt und nur teilweise entschlüsselt. Der Erreger wird in den meisten Fällen vermutlich durch Zellen des angeborenen Immunsystems kontrolliert oder eradiziert, ohne dass dies mit Standardmethoden in vivo nachgewiesen werden kann. Die anschließende adaptive Immunantwort wird wesentlich von CD4+- und CD8+-T-Lymphozyten vermittelt, während die humorale Immunität nur eine untergeordnete Bedeutung hat. Der Artikel gibt eine Übersicht über den aktuellen Wissensstand der intrapulmonalen Mechanismen, die im Verlauf von Exposition, latenter Infektion, aktiver Erkrankung und Therapie beobachtet werden.

Abstract

Tuberculosis is transmitted by inhalation of Mycobacterium tuberculosis-containing aerosols; 75 % of all patients show pulmonary manifestation. Immune responses after exposure that lead to clinical symptoms occur mainly in the respiratory tract and are only poorly understood. In most cases, cells of the innate immune system are believed to control the growth of or eradicate inhaled mycobacteria. However, this cannot be verified in vivo using standard methods. Subsequently, CD4+ and CD8+ T cell-driven adaptive immune responses are induced that attempt to control bacterial growth. The humoral defence appears to be less important. This article gives an overview of the current understanding of pulmonary immune mechanisms during exposure, latent infection, active disease and therapy of tuberculosis.

 
  • Literatur

  • 1 Kaufmann SHE. EFIS lecture. Immune response to tuberculosis: How to control the most successful pathogen on earth. Immunol Lett 2016; 175: 50-57
  • 2 Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; DOI: 10.1038/cmi.2017.88.
  • 3 Fennelly KP, Jones-López EC. Quantity and quality of inhaled dose predicts immunopathology in tuberculosis. Front Immunol 2015; 6: 313
  • 4 Perdomo C, Zedler U, Kühl AA. et al. Mucosal BCG vaccination induces protective lung-resident memory t cell populations against Tuberculosis. mBio 2016; 7: e01686-16
  • 5 Verrall AJ, Netea MG, Alisjahbana B. et al. Early clearance of Mycobacterium tuberculosis: a new frontier in prevention. Immunology 2014; 141: 506-513
  • 6 Thoma-Uszynski S, Stenger S, Takeuchi O. et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001; 291: 1544-1547
  • 7 van Tong H, Velavan TP, Thye T. et al. Human genetic factors in tuberculosis: an update. Trop Med Int Health TM IH 2017; 22: 1063-1071
  • 8 Scriba TJ, Coussens AK, Fletcher HA. Human Immunology of Tuberculosis. Microbiol Spectr 2017; 5: 1-24 doi:10.1128/microbiolspec.TBTB2-0016-2016
  • 9 Herzmann C, Lange C, Schaberg T. et al. Immunological evidence of incipient pulmonary tuberculosis. J Infect Dis 2012; 206: 1630-1631 author reply 1631-1632
  • 10 Welin A, Raffetseder J, Eklund D. et al. Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J Innate Immun 2011; 3: 508-518
  • 11 Sow FB, Florence WC, Satoskar AR. et al. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82: 934-945
  • 12 Martineau AR, Wilkinson KA, Newton SM. et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol Baltim Md 1950 2007; 178: 7190-7198
  • 13 Gutierrez MG, Master SS, Singh SB. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119: 753-766
  • 14 Chávez-Galán L, Vesin D, Martinvalet D. et al. Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability. J Immunol Res 2016; 2016: 4048235
  • 15 Maeda N, Nigou J, Herrmann J-L. et al. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 2003; 278: 5513-5516
  • 16 Torrelles JB, Azad AK, Schlesinger LS. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol Baltim Md 1950 2006; 177: 1805-1816
  • 17 Behar SM, Carpenter SM, Booty MG. et al. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26: 559-577
  • 18 Lindestam ArlehamnCS, Gerasimova A, Mele F. et al. Memory T Cells in Latent Mycobacterium tuberculosis Infection Are Directed against Three Antigenic Islands and Largely Contained in a CXCR3+CCR6+ Th1 Subset. PLoS Pathog 2013; 9: e1003130
  • 19 Stewart GR, Robertson BD, Young DB. Tuberculosis: a problem with persistence. Nat Rev Microbiol 2003; 1: 97-105
  • 20 Guirado E, Mbawuike U, Keiser TL. et al. Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. mBio 2015; 6: e02537-02514
  • 21 Gideon HP, Phuah J, Myers AJ. et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 2015; 11: e1004603
  • 22 Martin CJ, Cadena AM, Leung VW. et al. Digitally carcoding mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 2017; DOI: 10.1128/mBio.00312-17.
  • 23 Malherbe ST, Shenai S, Ronacher K. et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med 2016; 22: 1094-1100
  • 24 Volkman HE, Pozos TC, Zheng J. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 2010; 327: 466-469
  • 25 Cronan MR, Beerman RW, Rosenberg AF. et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 2016; 45: 861-876
  • 26 Cyktor JC, Carruthers B, Kominsky RA. et al. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J Immunol Baltim Md 1950 2013; 190: 2778-2790
  • 27 Zellweger J-P, Sotgiu G, Block M. et al. Risk assessment of tuberculosis in contacts by IFN-γ release assays. A Tuberculosis Network European Trials Group Study. Am J Respir Crit Care Med 2015; 191: 1176-1184
  • 28 Sester M, Sotgiu G, Lange C. et al. Interferon-γ release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis. Eur Respir J 2011; 37: 100-111
  • 29 Jafari C, Thijsen S, Sotgiu G. et al. Bronchoalveolar lavage enzyme-linked immunospot for a rapid diagnosis of tuberculosis: a Tuberculosis Network European Trialsgroup study. Am J Respir Crit Care Med 2009; 180: 666-673
  • 30 Filipe-Santos O, Bustamante J, Chapgier A. et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347-361
  • 31 Lee W-I, Huang J-L, Yeh K-W. et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc Taiwan Yi Zhi 2011; 110: 750-758
  • 32 Green AM, Difazio R, Flynn JL. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol Baltim Md 1950 2013; 190: 270-277
  • 33 Kagina BMN, Abel B, Scriba TJ. et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med 2010; 182: 1073-1079
  • 34 Tsao TCY, Huang CC, Chiou WK. et al. Levels of interferon-gamma and interleukin-2 receptor-alpha for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis 2002; 6: 720-727
  • 35 Tameris MD, Hatherill M, Landry BS. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet Lond Engl 2013; 381: 1021-1028
  • 36 Herzmann C, Ernst M, Ehlers S. et al. Increased frequencies of pulmonary Treg cells in latent M. tuberculosis infection. Eur Respir J 2012; 40: 1450-1457
  • 37 Semple PL, Binder AB, Davids M. et al. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med 2013; 187: 1249-1258
  • 38 Henao-Tamayo MI, Obregón-Henao A, Arnett K. et al. Effect of bacillus Calmette-Guérin vaccination on CD4+Foxp3+ T cells during acquired immune response to Mycobacterium tuberculosis infection. J Leukoc Biol 2016; 99: 605-617
  • 39 Srivastava S, Ernst JD. Cutting edge: Direct recognition of infected cells by CD4 T cells is required for control of intracellular Mycobacterium tuberculosis in vivo. J Immunol Baltim Md 1950 2013; 191: 1016-1020
  • 40 Kalsdorf B, Scriba TJ, Wood K. et al. HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am J Respir Crit Care Med 2009; 180: 1262-1270
  • 41 Jambo KC, Sepako E, Fullerton DG. et al. Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults. Thorax 2011; 66: 375-382
  • 42 Sakai S, Kauffman KD, Schenkel JM. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol Baltim Md 1950 2014; 192: 2965-2969
  • 43 Sakai S, Kauffman KD, Sallin MA. et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog 2016; 12: e1005667
  • 44 Sousa AO, Mazzaccaro RJ, Russell RG. et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 2000; 97: 4204-4208
  • 45 Silva BD de S, Trentini MM, da Costa AC. et al. Different phenotypes of CD8+ T cells associated with bacterial load in active tuberculosis. Immunol Lett 2014; 160: 23-32
  • 46 van Pinxteren LA, Cassidy JP, Smedegaard BH. et al. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 2000; 30: 3689-3698
  • 47 Ghazalsofala R, Rezaee SA, Rafatpanah H. et al. Evaluation of CD4+ CD25+ FoxP3+ Regulatory T cells and FoxP3 and CTLA-4 gene Expression in Patients with Newly Diagnosed Tuberculosis in Northeast of Iran. Jundishapur J Microbiol 2015; 8: e17726
  • 48 Li N, Xie W-P, Kong H. et al. Enrichment of regulatory T-cells in blood of patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis 2015; 19: 1230-1238
  • 49 Wang C, Jiang T, Wei L. et al. Association of CTLA4 gene polymorphisms with susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. Int J Biol Sci 2012; 8: 945-952
  • 50 Kirman J, McCoy K, Hook S. et al. CTLA-4 blockade enhances the immune response induced by mycobacterial infection but does not lead to increased protection. Infect Immun 1999; 67: 3786-3792
  • 51 Amulic B, Cazalet C, Hayes GL. et al. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30: 459-489
  • 52 Eum SY, Kong JH, Hong MS. et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 2009; 137: 122-128
  • 53 Gopal R, Monin L, Torres D. et al. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 2013; 188: 1137-1146
  • 54 Berrocal-Almanza LC, Goyal S, Hussain A. et al. S100A12 is up-regulated in pulmonary tuberculosis and predicts the extent of alveolar infiltration on chest radiography: an observational study. Sci Rep 2016; 6: 31798
  • 55 Berry MPR, Graham CM, McNab FW. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973-977
  • 56 Dallenga T, Schaible UE. Neutrophils in tuberculosis – first line of defence or booster of disease and targets for host directed therapy?. Pathog Dis 2016; doi DOI: 10.1093/femspd/ftw012.
  • 57 Dallenga T, Repnik U, Corleis B. et al. M. tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe 2017; 22: 519-530.e3
  • 58 Corleis B, Korbel D, Wilson R. et al. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 2012; 14: 1109-1121
  • 59 Manca C, Paul S, Barry CE. et al. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 1999; 67: 74-79
  • 60 Millman AC, Salman M, Dayaram YK. et al. Natural killer cells, glutathione, cytokines, and innate immunity against Mycobacterium tuberculosis. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 2008; 28: 153-165
  • 61 Guerra C, Johal K, Morris D. et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol 2012; 168: 142-152
  • 62 Allen M, Bailey C, Cahatol I. et al. Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Front Immunol 2015; 6: 508
  • 63 Schierloh P, Alemán M, Yokobori N. et al. NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology 2005; 116: 541-552
  • 64 Junqueira-Kipnis AP, Kipnis A, Jamieson A. et al. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J Immunol Baltim Md 1950 2003; 171: 6039-6045
  • 65 Jiang J, Yang B, An H. et al. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect 2016; 72: 338-352
  • 66 Sakala IG, Kjer-Nielsen L, Eickhoff CS. et al. Functional Heterogeneity and Antimycobacterial Effects of Mouse Mucosal-Associated Invariant T Cells Specific for Riboflavin Metabolites. J Immunol Baltim Md 1950 2015; 195: 587-601
  • 67 Boom WH. Gammadelta T cells and Mycobacterium tuberculosis. Microbes Infect 1999; 1: 187-195
  • 68 Meraviglia S, El DakerS, Dieli F. et al. γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011; 2011: 587315 doi:10.1155/2011/587315
  • 69 Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 2015; 264: 167-181
  • 70 Alkadi A, Alduaiji N, Alrehaily A. Risk of tuberculosis reactivation with rituximab therapy. Int J Health Sci 2017; 11: 41-44
  • 71 Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 2015; 264: 167-181
  • 72 Colditz GA, Berkey CS, Mosteller F. et al. The efficacy of bacillus Calmette-Guérin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 1995; 96: 29-35
  • 73 Colditz GA, Brewer TF, Berkey CS. et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271: 698-702
  • 74 Maertzdorf J, McEwen G, Weiner J. et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med 2016; 8: 86-95
  • 75 Kaufmann SHE, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2017; 56: 263-267
  • 76 Loxton AG, Knaul JK, Grode L. et al. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol CVI 2017; DOI: 10.1128/CVI.00439-16.
  • 77 Spertini F, Audran R, Chakour R. et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 2015; 3: 953-962
  • 78 von Reyn CF, Mtei L, Arbeit RD. et al. Prevention of tuberculosis in Bacille Calmette–Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS 2010; 24: 675-685
  • 79 Weng H, Huang J-Y, Meng X-Y. et al. Adjunctive therapy of Mycobacterium vaccae vaccine in the treatment of multidrug-resistant tuberculosis: A systematic review and meta-analysis. Biomed Rep 2016; 4: 595-600
  • 80 Weiner J, Kaufmann SHE. High-throughput and computational approaches for diagnostic and prognostic host tuberculosis biomarkers. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2017; 56: 258-262
  • 81 Zak DE, Penn-Nicholson A, Scriba TJ. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 2016; 387: 2312-2322