CC BY-NC-ND 4.0 · Planta Medica International Open 2018; 5(01): e1-e4
DOI: 10.1055/s-0043-123076
Letters
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Evaluation of the Antibacterial, Antioxidant and α-Glucosidase Inhibitory Activities of Withanolides from Physalis gracilis

Gerardo Padierna
1   Instituto de Química, Universidad Nacional Autónoma de México, Cd. Mx., México
,
Ana L. Pérez-Castorena
1   Instituto de Química, Universidad Nacional Autónoma de México, Cd. Mx., México
,
Mahinda Martínez
2   Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
,
Antonio Nieto-Camacho
1   Instituto de Química, Universidad Nacional Autónoma de México, Cd. Mx., México
,
Jesús Morales-Jiménez
3   División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica-Centro de Investigación, Innovación y Desarrollo de las Zonas Áridas, San Luis Potosí, México
,
Emma Maldonado
1   Instituto de Química, Universidad Nacional Autónoma de México, Cd. Mx., México
› Author Affiliations
Further Information

Publication History

received 15 August 2017
revised 01 November 2017

accepted 13 November 2017

Publication Date:
12 February 2018 (online)

Abstract

A chemical investigation of the leaves, flowers, and stems of Physalis gracilis led to the isolation of three withanolides identified as withanolide D (1), 24,25-dihydrowithanolide D (2), and withaphysacarpin (3). The structures of these compounds were determined by analyses of their spectroscopic data, including 1D and 2D NMR. The antibacterial, antioxidant, and α-glucosidase inhibitory activities of compounds 1 and 3 and derivatives 4 and 5 were evaluated. None of the compounds showed antioxidant or glucosidase inhibitory activity. Also, they were inactive against gram-negative bacteria. However, compound 3 was found active against Bacillus subtilis (MIC=65.5 µM) and compound 5 against Staphylococcus aureus (MIC=27.9 µM).

Supporting Information

 
  • References

  • 1 Martínez M. Revision of Physalis section epeteiorhiza (Solanaceae). Ann Inst Biol Bot UNAM 1998; 69: 71-117
  • 2 Whitson M, Manos PS. Untangling Physalis (Solanaceae) from the physaloids: A two-gene phylogeny of the physalinae. Syst Bot 2005; 30: 216-230
  • 3 Argueta VA. coordinator Atlas of the plants of the traditional Mexican medicine, Vol. I. México, D. F.: Instituto Nacional Indigenista; 1994. 344 431
  • 4 Zhang WN, Tong WY. Chemical constituents and biological activities of plants from the genus Physalis. Chem Biodivers 2016; 13: 48-65
  • 5 Pérez-Castorena AL, Oropeza RF, Vázquez AR, Martínez M, Maldonado E. Labdanes and withanolides from Physalis coztomatl. J Nat Prod 2006; 69: 1029-1033
  • 6 Maldonado E, Pérez-Castorena AL, Romero Y, Martínez M. Absolute configuration of labdane diterpenoids from Physalis nicandroides. J Nat Prod 2015; 78: 202-207
  • 7 Santiaguillo HJF, Blas YS. Aprovechamiento tradicional de las especies de Physalis en Mexico. Rev Geogr Agr 2009; 43: 81-86
  • 8 Lavie D, Kirson I, Glotter E. Constituents of Withania somnifera Dun. Part X. The structure of withanolide D. Isr J Chem 1968; 6: 671-678
  • 9 Cordero CP, Morantes SJ, Páez A, Rincón J, Aristizábal FA. Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia 2009; 80: 364-368
  • 10 Zhang H, Hagan K, Patel O, Tong X, Day VW, Timmermann BN. 6α,7α-Epoxy-5α-hydroxy-1-oxo-22R-witha-2,24-dienolide (withanolide B), 5β,6β-epoxy-4β,20-dihydroxy-1-oxo-22R-witha-2,24-dienolide (withanolide D), and 4β,27-dihydroxy-1-oxo-22R-witha-2,5,24-trienolide (5,6-deoxywithaferin A) in roots of Withania somnifera: Isolation and their crystal structures. J Chem Crystallogr 2014; 44: 169-176
  • 11 Kirson I, Glotter E, Abraham A, Lavie D. Constituents of Withania somnifera Dun-XI: The structure of three new withanolides. Tetrahedron 1970; 26: 2209-2219
  • 12 Eastwood FW, Kirson I, Lavie D, Abraham A. New withanolides from a cross of a South African chemotype by chemotype II (Israel) in Withania somnifera. Phytochemistry 1980; 19: 1503-1507
  • 13 Subramanian SS, Sethi PD. Steroidal lactones of Physalis ixocarpa leaves. Indian J Pharm 1973; 35: 36-38
  • 14 Kennelly EJ, Gerhäuser C, Song LL, Graham JG, Beecher CWW, Pezzuto JM, Kinghorn AD. Induction of quinone reductase by withanolides isolated from Physalis philadelphica (Tomatillos). J Agric Food Chem 1997; 45: 3771-3777
  • 15 Maldonado E, Pérez-Castorena AL, Garcés C, Martínez M. Philadelphicalactones C and D and other cytotoxic compounds from Physalis philadelphica. Steroids 2011; 76: 724-728
  • 16 Hsieh PW, Huang ZY, Chen JH, Chang FR, Wu CC, Yang YL, Chiang MY, Yen MH, Chen SL, Yen HF, Lübken T, Hung WC, Wu YC. Cytotoxic withanolides from Tubocapsicum anomalum. J Nat Prod 2007; 70: 747-753
  • 17 Roumy V, Biabiany M, Hennebelle T, Aliouat EM, Pottier M, Joseph H, Joha S, Quesnel B, Alkhatib R, Sahpaz S, Bailleu F. Antifungal and cytotoxic activity of withanolides from Acnistus arborescens. J Nat Prod 2010; 73: 1313-1317
  • 18 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests, approved standard. 7th ed. (CLSI document M02-A11) Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2012
  • 19 Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. approved standard (CLSI document M07-A9) Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2012
  • 20 Ye XP, Song CQ, Yuan P, Mao RG. α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin J Nat Med 2010; 8: 349-352
  • 21 Jo SH, Ka EH, Lee HS, Apostolidis E, Jang HD, Kwon YI. Comparison of antioxidant potential and rat intestinal α-glucosidases inhibitory activities of quercetin, rutin, and isoquercetin. Int J Appl Res Nat Prod 2009; 2: 52-60
  • 22 Cavin A, Hostettmann K, Dyatmyko W, Potterat O. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med 1998; 64: 393-396
  • 23 Chans GM, Nieto-Camacho A, Ramírez-Apan T, Hernández-Ortega S, Álvarez-Toledano C, Gómez E. Synthetic, spectroscopic, crystallographic, and biological studies of seven-coordinated diorganotin (IV) complexes derived from Schiff bases and pyridinic carboxylic acids. Aust J Chem 2016; 69: 279-290
  • 24 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358