RSS-Feed abonnieren
DOI: 10.1055/s-0043-1760863
What Is the Microbiome? A Description of a Social Network
Abstract
The gut microbiome has coevolved with its hosts over the years, forming a complex and symbiotic relationship. It is formed by what we do, what we eat, where we live, and with whom we live. The microbiome is known to influence our health by training our immune system and providing nutrients for the human body. However, when the microbiome becomes out of balance and dysbiosis occurs, the microorganisms within can cause or contribute to diseases. This major influencer on our health is studied intensively, but it is unfortunately often overlooked by the surgeon and in surgical practice. Because of that, there is not much literature about the microbiome and its influence on surgical patients or procedures. However, there is evidence that it plays a major role, showing that it needs to be a topic of interest for the surgeon. This review is written to show the surgeon the importance of the microbiome and why it should be taken into consideration when preparing or treating patients.
Publikationsverlauf
Artikel online veröffentlicht:
08. Februar 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Berg G, Rybakova D, Fischer D. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8 (01) 103
- 2 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. Biorxiv 2016; 036103
- 3 Eckburg PB, Bik EM, Bernstein CN. et al. Diversity of the human intestinal microbial flora. Science 2005; 308 (5728): 1635-1638
- 4 Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164 (03) 337-340
- 5 de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 2022; 71 (05) 1020-1032
- 6 Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307 (5717): 1915-1920
- 7 Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007; 104 (34) 13780-13785
- 8 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122): 1022-1023
- 9 Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
- 10 Gurung M, Li Z, You H. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51: 102590
- 11 Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol 2021; 12: 622064
- 12 Qin Y, Havulinna AS, Liu Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54 (02) 134-142
- 13 Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues Clin Neurosci 2011; 13 (01) 55-62
- 14 Sampson TR, Debelius JW, Thron T. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 2016; 167 (06) 1469-1480.e12
- 15 Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74 (10) 624-634
- 16 Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 2015; 15 (10) 1211-1219
- 17 Almeida A, Nayfach S, Boland M. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021; 39 (01) 105-114
- 18 Gacesa R, Kurilshikov A, Vich Vila A. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 2022; 604 (7907): 732-739
- 19 Goodrich JK, Davenport ER, Beaumont M. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 2016; 19 (05) 731-743
- 20 Kong F, Deng F, Li Y, Zhao J. Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes 2019; 10 (02) 210-215
- 21 Santoro A, Ostan R, Candela M. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 2018; 75 (01) 129-148
- 22 Scepanovic P, Hodel F, Mondot S. et al; Milieu Intérieur Consortium. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 2019; 7 (01) 130
- 23 Manor O, Dai CL, Kornilov SA. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun 2020; 11 (01) 5206
- 24 Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target?. Nat Rev Gastroenterol Hepatol 2017; 14 (01) 9-21
- 25 Sears CL. Molecular physiology and pathophysiology of tight junctions V. assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol 2000; 279 (06) G1129-G1134
- 26 Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30 (06) 492-506
- 27 Van der Sluis M, De Koning BA, De Bruijn AC. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131 (01) 117-129
- 28 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157 (01) 121-141
- 29 Macpherson AJ, Slack E, Geuking MB, McCoy KD. The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol 2009; 31 (02) 145-149
- 30 Arike L, Hansson GC. The densely o-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J Mol Biol 2016; 428 (16) 3221-3229
- 31 Cherrington CA, Hinton M, Pearson GR, Chopra I. Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J Appl Bacteriol 1991; 70 (02) 161-165
- 32 Rivera-Chávez F, Zhang LF, Faber F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe 2016; 19 (04) 443-454
- 33 Hegazy AN, West NR, Stubbington MJT. et al; Oxford IBD Cohort Investigators. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 2017; 153 (05) 1320-1337.e16
- 34 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341 (6145): 569-573
- 35 Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8 (02) 172-184
- 36 Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40 (03) 235-243
- 37 Roediger WEW. The starved colon: diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 1990; 33 (10) 858-862
- 38 Harig JM, Soergel KH, Komorowski RA, Wood CM. Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 1989; 320 (01) 23-28
- 39 Wu L, Luo Y. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front Microbiol 2021; 12: 611413
- 40 Morton JT, Freed SD, Lee SW, Friedberg I. A large scale prediction of bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins. BMC Bioinformatics 2015; 16 (01) 381
- 41 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124 (04) 783-801
- 42 Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336 (6086): 1268-1273
- 43 Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol 2020; 38 (01) 23-48
- 44 Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A 2010; 107 (01) 228-233
- 45 Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 2016; 5 (05) 317-320
- 46 Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 2017; 14 (01) 43-54
- 47 Larsen N, Vogensen FK, van den Berg FWJ. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5 (02) e9085
- 48 Turnbaugh PJ, Hamady M, Yatsunenko T. et al. A core gut microbiome in obese and lean twins. Nature 2009; 457 (7228): 480-484
- 49 Ott SJ, Musfeldt M, Wenderoth DF. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53 (05) 685-693
- 50 Elvers KT, Wilson VJ, Hammond A. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open 2020; 10 (09) e035677
- 51 Blaser M. Antibiotic overuse: stop the killing of beneficial bacteria. Nature 2011; 476 (7361): 393-394
- 52 Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6 (11) e280
- 53 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4554-4561
- 54 Dubourg G, Lagier JC, Robert C. et al. Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. Int J Antimicrob Agents 2014; 44 (02) 117-124
- 55 Anthony WE, Wang B, Sukhum KV. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep 2022; 39 (02) 110649
- 56 Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1 (01) 56-66
- 57 Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 1992; 326 (05) 281-286
- 58 de Jonge SW, Boldingh QJJ, Solomkin JS. et al. Effect of postoperative continuation of antibiotic prophylaxis on the incidence of surgical site infection: a systematic review and meta-analysis. Lancet Infect Dis 2020; 20 (10) 1182-1192
- 59 O'Brien CL, Allison GE, Grimpen F, Pavli P. Impact of colonoscopy bowel preparation on intestinal microbiota. PLoS One 2013; 8 (05) e62815
- 60 Jalanka J, Salonen A, Salojärvi J. et al. Effects of bowel cleansing on the intestinal microbiota. Gut 2015; 64 (10) 1562-1568
- 61 Drago L, Toscano M, De Grandi R, Casini V, Pace F. Persisting changes of intestinal microbiota after bowel lavage and colonoscopy. Eur J Gastroenterol Hepatol 2016; 28 (05) 532-537
- 62 Nagata N, Tohya M, Fukuda S. et al. Effects of bowel preparation on the human gut microbiome and metabolome. Sci Rep 2019; 9 (01) 4042
- 63 Harrell L, Wang Y, Antonopoulos D. et al. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One 2012; 7 (02) e32545
- 64 Yang Z, Tong C, Qian X, Wang H, Wang Y. Mechanical bowel preparation is a risk factor for postoperative delirium as it alters the gut microbiota composition: a prospective randomized single-center study. Front Aging Neurosci 2022; 14: 847610
- 65 Kiran RP, Murray ACA, Chiuzan C, Estrada D, Forde K. Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg 2015; 262 (03) 416-425 , discussion 423–425
- 66 Ferrie S, Webster A, Wu B, Tan C, Carey S. Gastrointestinal surgery and the gut microbiome: a systematic literature review. Eur J Clin Nutr 2021; 75 (01) 12-25
- 67 Tarazi M, Jamel S, Mullish BH, Markar SR, Hanna GB. Impact of gastrointestinal surgery upon the gut microbiome: a systematic review. Surgery 2022; 171 (05) 1331-1340
- 68 Kazmierczak BI, Schniederberend M, Jain R. Cross-regulation of pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol 2015; 28: 78-82
- 69 Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol 2002; 291 (08) 605-614
- 70 Vasil ML, Chamberlain C, Grant CC. Molecular studies of pseudomonas exotoxin A gene. Infect Immun 1986; 52 (02) 538-548
- 71 Lebrun I, Marques-Porto R, Pereira AS, Pereira A, Perpetuo EA. Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini Rev Med Chem 2009; 9 (07) 820-828
- 72 Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 2000; 68 (09) 5218-5224
- 73 Shogan BD, Belogortseva N, Luong PM. et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med 2015; 7 (286) 286ra68
- 74 van Praagh JB, de Goffau MC, Bakker IS. et al. Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage. Ann Surg 2019; 269 (05) 911-916
- 75 van Praagh JB, de Goffau MC, Bakker IS, Harmsen HJM, Olinga P, Havenga K. Intestinal microbiota and anastomotic leakage of stapled colorectal anastomoses: a pilot study. Surg Endosc 2016; 30 (06) 2259-2265
- 76 Jackson MA, Jeffery IB, Beaumont M. et al. Signatures of early frailty in the gut microbiota. Genome Med 2016; 8 (01) 8
- 77 Brown AC, Valiere A. Probiotics and medical nutrition therapy. Nutr Clin Care 2004; 7 (02) 56-68
- 78 Roberfroid M, Gibson GR, Hoyles L. et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104 (Suppl. 02) S1-S63
- 79 Chowdhury AH, Adiamah A, Kushairi A. et al. Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 2020; 271 (06) 1036-1047
- 80 Wieërs G, Belkhir L, Enaud R. et al. How probiotics affect the microbiota. Front Cell Infect Microbiol 2020; 9: 454
- 81 Li Y-T, Cai H-F, Wang Z-H, Xu J, Fang J-Y. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther 2016; 43 (04) 445-457
- 82 König J, Siebenhaar A, Högenauer C. et al. Consensus report: faecal microbiota transfer: clinical applications and procedures. Aliment Pharmacol Ther 2017; 45 (02) 222-239
- 83 Gai X, Wang H, Li Y. et al. Fecal microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of sepsis. Front Cell Infect Microbiol 2021; 11: 736204
- 84 Kim SM, DeFazio JR, Hyoju SK. et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat Commun 2020; 11 (01) 2354
- 85 Wang S, Xu M, Wang W. et al. Systematic review: adverse events of fecal microbiota transplantation. PLoS One 2016; 11 (08) e0161174
- 86 DeFilipp Z, Bloom PP, Torres Soto M. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019; 381 (21) 2043-2050
- 87 Doubeni CA, Major JM, Laiyemo AO. et al. Contribution of behavioral risk factors and obesity to socioeconomic differences in colorectal cancer incidence. J Natl Cancer Inst 2012; 104 (18) 1353-1362
- 88 Doubeni CA, Laiyemo AO, Major JM. et al. Socioeconomic status and the risk of colorectal cancer: an analysis of more than a half million adults in the National Institutes of Health-AARP Diet and Health Study. Cancer 2012; 118 (14) 3636-3644
- 89 Clarke SF, Murphy EF, O'Sullivan O. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63 (12) 1913-1920
- 90 Allen JM, Mailing LJ, Niemiro GM. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 2018; 50 (04) 747-757
- 91 Bolte LA, Vich Vila A, Imhann F. et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021; 70 (07) 1287-1298
- 92 Hyoju SK, Adriaansens C, Wienholts K. et al. Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: an experimental model. Br J Surg 2020; 107 (06) 743-755
- 93 Vanegas SM, Meydani M, Barnett JB. et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 2017; 105 (03) 635-650
- 94 David LA, Materna AC, Friedman J. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol 2014; 15 (07) R89