CC BY 4.0 · Organic Materials 2023; 05(03): 166-174
DOI: 10.1055/s-0043-1761314
Original Article

Supramolecular Polymerization of all-cis-Fluorinated Cyclohexanes: Influence of Side Chains

Shyamkumar V. Haridas
a   Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
,
Oleksandr Shyshov
a   Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
,
a   Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
› Author Affiliations


Abstract

Custom-designed materials based on supramolecular polymers are of interest for applications in organic electronics and biomedicine. Recently, we have shown that derivatives of the highly polar compound all-cis hexafluorocyclohexane undergo seeded polymerization and can therefore be used to prepare soluble nanofibers with controlled length. In this work, we aimed to explore the scope of this process. We studied the supramolecular polymerization of six all-cis-fluorinated cyclohexane monomers, with five differing in the solubilizing side chains and one in the secondary supramolecular binding site. In studies on controlled supramolecular polymerization, we found that three of the monomers could be induced to polymerize by ultrasound irradiation and four by addition of seeds. For these latter examples, we were able to identify a solvent mixture that led to spontaneous polymerization and hysteresis in heating and cooling curves. These results show that the living supramolecular polymerization of fluorinated cyclohexanes is not limited to one particular monomer, but that side chains exhibiting a strong solvophobic effect that cannot be compensated within the binary solvent “window” represent a limitation to the approach. We also demonstrate that nanofibers based on stacks of fluorinated cyclohexanes can be dissociated by addition of chloride ions.



Publication History

Received: 28 May 2023

Accepted after revision: 27 July 2023

Article published online:
07 September 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Chem. Rev. 2001; 101: 4071
    • 2a Aida T, Meijer EW, Stupp SI. Science 2012; 335: 813
    • 2b Webber MJ, Appel EA, Meijer EW, Langer R. Nat. Mater. 2016; 15: 13
    • 2c Dumele O, Chen J, Passarelli JV, Stupp SI. Adv. Mater. 2020; 32: 1907247
    • 3a Ponnuswamy N, Pantoş GD, Smulders MMJ, Sanders JKM. J. Am. Chem. Soc. 2012; 134: 566
    • 3b Lynes AD, Hawes CS, Ward EN, Haffner B, Möbius ME, Byrne K, Schmitt W, Pal R, Gunnlaugsson T. CrstEngComm 2017; 19: 1427
    • 3c Desmarchelier A, Alvarenga BG, Caumes X, Dubreucq L, Troufflard C, Tessier M, Vanthuyne N, Idé J, Maistriaux T, Beljonne D, Brocorens P, Lazzaroni R, Raynal M, Bouteiller L. Soft Matter 2016; 12: 7824
  • 4 Cantekin S, de Greef TFA, Palmans ARA. Chem. Soc. Rev. 2012; 41: 6125
  • 5 Besenius P, Heynens JL, Straathof R, Nieuwenhuizen MM, Bomans PH, Terreno E, Aime S, Strijkers GJ, Nicolay K, Meijer EW. Contrast Media Mol. Imaging 2012; 7: 356
    • 6a Sasaki N, Mabesoone MFJ, Kikkawa J, Fukui T, Shioya N, Shimoaka T, Hasegawa T, Takagi H, Haruki R, Shimizu N, Adachi SI, Meijer EW, Takeuchi M, Sugiyasu K. Nat. Commun. 2020; 11: 3578
    • 6b Stals PJM, Korevaar PA, Gillissen MA, de Greef TF, Fitié CF, Sijbesma RP, Palmans AR, Meijer EW. Angew. Chem. Int. Ed. 2012; 51: 11297
    • 6c Prasanthkumar S, Zhang W, Jin W, Fukushima T, Aida T. Angew. Chem. Int. Ed. 2015; 54: 11168
  • 7 Wang X, Manners I, Winnik MA. Science 2007; 317: 644
    • 9a Adelizzi B, Aloi A, Markvoort AJ, Ten Eikelder HMM, Voets IK, Palmans ARA, Meijer EW. J. Am. Chem. Soc. 2018; 140: 7168
    • 9b Jung SH, Bochicchio D, Pavan GM, Sugiyasu K. J. Am. Chem. Soc. 2018; 140: 10570
    • 9c Wagner W, Wehner M, Stepanenko V, Würthner F. J. Am. Chem. Soc. 2019; 141: 12044
  • 10 Ogi S, Sugiyasu K, Manna S, Takeuchi M. Nat. Chem. 2014; 6: 188
    • 11a Korevaar PA, George SJ, Markvoort AJ, Smulders MM, Hilbers PA, Schenning AP, De Greef TF, Meijer EW. Nature 2012; 481: 492
    • 11b Matern J, Dorca Y, Sánchez L, Fernández G. Angew. Chem. Int. Ed. 2019; 58: 16730
    • 11c Langenstroer A, Kartha KK, Dorca Y, Droste J, Stepanenko V, Albuquerque RQ, Hansen MR, Sánchez L, Fernández G. J. Am. Chem. Soc. 2019; 141: 5192
    • 11d Ogi S, Fukui T, Jue ML, Takeuchi M, Sugiyasu K. Angew. Chem. Int. Ed. 2014; 53: 14363
    • 11e Würthner F, Yao S, Beginn U. Angew. Chem. Int. Ed. 2003; 42: 3247
    • 11f Yagai S, Yamauchi M, Kobayashi A, Karatsu T, Kitamura A, Ohba T, Kikkawa Y. J. Am. Chem. Soc. 2012; 134: 18205
    • 11g Hifsudheen M, Mishra RK, Vedhanarayanan B, Praveen VK, Ajayaghosh A. Angew. Chem. Int. Ed. 2017; 56: 12634
    • 11h Wehner M, Röhr MIS, Bühler M, Stepanenko V, Wagner W, Würthner F. J. Am. Chem. Soc. 2019; 141: 6092
    • 12a Wagner W, Wehner M, Stepanenko V, Ogi S, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 16008
    • 12b Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat. Chem. 2017; 9: 493
    • 12c Sarkar A, Sasmal R, Empereur-Mot C, Bochicchio D, Kompella SVK, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. J. Am. Chem. Soc. 2020; 142: 7606
    • 12d Greciano EE, Matarranz B, Sánchez L. Angew. Chem. Int. Ed. 2018; 57: 4697
    • 12e Greciano EE, Sánchez L. Chem. Eur. J. 2016; 22: 13724
    • 12f Ma X, Zhang Y, Zhang Y, Liu Y, Che Y, Zhao J. Angew. Chem. Int. Ed. 2016; 55: 9539
    • 12g Wang H, Zhang Y, Chen Y, Pan H, Ren X, Chen Z. Angew. Chem. Int. Ed. 2020; 59: 5185
    • 12h Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Angew. Chem. Int. Ed. 2021; 60: 4368
    • 12i Valera JS, Gómez R, Sánchez L. Small 2018; 14: 1702437
    • 12j Aliprandi A, Mauro M, De Cola L. Nat. Chem. 2016; 8: 10
    • 12k Ogi S, Stepanenko V, Thein J, Würthner F. J. Am. Chem. Soc. 2016; 138: 670
    • 12l Sarkar S, Sarkar A, George SJ. Angew. Chem. Int. Ed. 2020; 59: 19841
    • 12m Sarkar S, Sarkar A, Som A, Agasti SS, George SJ. J. Am. Chem. Soc. 2021; 143: 11777
    • 12n Sarkar A, Sasmal R, Das A, Agasti SS, George SJ. Chem. Commun. 2021; 57: 3937
    • 12o Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Angew. Chem. Int. Ed. 2021; 60: 18209
    • 12p Laishram R, Sarkar S, Seth I, Khatun N, Aswal VK, Maitra U, George SJ. J. Am. Chem. Soc. 2022; 144: 11306
    • 12q Sasaki N, Yuan J, Fukui T, Takeuchi M, Sugiyasu K. Chem. Eur. J. 2020; 26: 7840
    • 12r Singh A, Joseph JP, Gupta D, Sarkar I, Pal A. Chem. Commun. 2018; 54: 10730
    • 13a Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. Science 2015; 347: 646
    • 13b Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. J. Am. Chem. Soc. 2015; 137: 3300
    • 13c Ogi S, Matsumoto K, Yamaguchi S. Angew. Chem. Int. Ed. 2018; 57: 2339
    • 13d Fukaya N, Ogi S, Kawashiro M, Yamaguchi S. Chem. Commun. 2020; 56: 12901
    • 13e Choi H, Ogi S, Ando N, Yamaguchi S. J. Am. Chem. Soc. 2021; 143: 2953
    • 13f Ogi S, Fukaya N, Arifin Arifin, Skjelstad BB, Hijikata Y, Yamaguchi S. Chem. Eur. J. 2019; 25: 7303
    • 13g Naranjo C, Adalid S, Gómez R, Sánchez L. Angew. Chem. Int. Ed. 2023; 62: e202218572
    • 14a Mishra A, Korlepara DB, Kumar M, Jain A, Jonnalagadda N, Bejagam KK, Balasubramanian S, George SJ. Nat. Commun. 2018; 9: 1295
    • 14b Jain A, Dhiman S, Dhayani A, Vemula PK, George SJ. Nat. Commun. 2019; 10: 450
    • 14c Endo M, Fukui T, Jung SH, Yagai S, Takeuchi M, Sugiyasu K. J. Am. Chem. Soc. 2016; 138: 14347
    • 14d Chakraborty A, Ghosh G, Pal DS, Varghese S, Ghosh S. Chem. Sci. 2019; 10: 7345
  • 15 Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Nat. Commun. 2021; 12: 3134
    • 16a Keddie NS, Slawin AMZ, Lebl T, Philp D, OʼHagan D. Nat. Chem. 2015; 7: 483
    • 16b Wiesenfeldt MP, Nairoukh Z, Li W, Glorius F. Science 2017; 357: 908
    • 17a Pratik SM, Nijamudheen A, Datta A. ChemPhysChem 2016; 17: 2373
    • 17b Clark JL, Taylor A, Geddis A, Neyyappadath RM, Piscelli BA, Yu C, Cordes DB, Slawin AMZ, Cormanich RA, Guldin S, OʼHagan D. Chem. Sci. 2021; 12: 9712
    • 17c Poskin TJ, Piscelli BA, Yoshida K, Cordes DB, Slawin AMZ, Cormanich R A, Yamada S, OʼHagan D. Chem. Commun. 2022; 58: 7968
    • 17d Yu C, Piscelli BA, Maharik NA, Cordes DB, Slawin AMZ, Cormanich RA, OʼHagan D. Chem. Commun. 2022; 58: 12855
    • 17e Clark JL, Neyyappadadth RM, Yu C, Slawin AMZ, Cordes DB, OʼHagan D. Chem. Eur. J. 2021; 27: 16000
    • 17f Theodoridis A, Papamokos G, Wiesenfeldt MP, Wollenburg M, Müllen K, Glorius F, Floudas G. J. Phys. Chem. B 2021; 125: 3700
    • 17g Al-Maharik N, Kirsch P, Slawin AMZ, Cordes DB, OʼHagan D. Org. Biomol. Chem. 2016; 14: 9974
    • 17h OʼHagan D. Chem. Rec. 2023; e202300027
  • 18 Shyshov O, Siewerth KA, von Delius M. Chem. Commun. 2018; 54: 4353
  • 19 Schnitzer T, Preuss MD, van Basten J, Schoenmakers SMC, Spiering AJH, Vantomme G, Meijer EW. Angew. Chem. Int. Ed. 2022; 61: e202206738
  • 20 Fukui T, Sasaki N, Takeuchi M, Sugiyasu K. Chem. Sci. 2019; 10: 6770
  • 21 Vantomme G, Ter Huurne GM, Kulkarni C, Ten Eikelder HMM, Markvoort AJ, Palmans ARA, Meijer EW. J. Am. Chem. Soc. 2019; 141: 18278
    • 22a Weyandt E, Leanza L, Capelli R, Pavan GM, Vantomme G, Meijer EW. Nat. Commun. 2022; 13: 248
    • 22b Su L, Mosquera J, Mabesoone MFJ, Schoenmakers SMC, Muller C, Vleugels MEJ, Dhiman S, Wijker S, Palmans ARA, Meijer EW. Science 2022; 377: 213
    • 22c Jansen SAH, Weyandt E, Aoki T, Akiyama T, Itoh Y, Vantomme G, Aida T, Meijer EW. J. Am. Chem. Soc. 2023; 145: 4231