CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(02): 164-172
DOI: 10.1055/s-0043-1761492
Original Article

Correlation of brain segmental volume changes with clinical parameters: a longitudinal study in multiple sclerosis patients

Correlação das alterações do volume segmentar cerebral com parâmetros clínicos: um estudo longitudinal em pacientes com esclerose múltipla
1   University of Health Sciences, Izmir Bozyaka Education and Research Hospital, Department of Neurology, Izmir, Turkey.
,
2   Izmir Katip Celebi University, Ataturk Education and Research Hospital, Department of Radiology, Izmir, Turkey.
,
1   University of Health Sciences, Izmir Bozyaka Education and Research Hospital, Department of Neurology, Izmir, Turkey.
,
3   University of Health Sciences, Izmir Bozyaka Education and Research Hospital, Department of Radiology, Izmir, Turkey.
,
4   Izmir Katip Celebi University, Department of Biostatistics, Izmir, Turkey.
› Author Affiliations

Abstract

Objective To measure the cranial volume differences from 15 different parts in the follow-up of relapsing-remitting multiple sclerosis (RRMS) patients and correlate them with clinical parameters.

Methods Forty-seven patients with RRMS were included in the study. Patients were grouped into two categories; low Expanded Disability Status Scale (EDSS) (< 3; group 1), and moderate-high EDSS (≥ 3; group 2). Patients were evaluated with Beck Depression Inventory (BDI), Montreal Cognitive Assessment (MOCA), Symbol Digit Modalities Test (SDMT), Fatigue Severity Scale (FSS), and calculated Annualized Relapse Rate (ARR) scores. Magnetic resonance imaging (MRI) was performed with a 1.5T MRI device (Magnetom AERA, Siemens, Erlangen, Germany) twice in a 1-year period. Volumetric analysis was performed by a free, automated, online MRI brain volumetry software. The differences in volumetric values between the two MRI scans were calculated and correlated with the demographic and clinical parameters of the patients.

Results The number of attacks, disease duration, BDI, and FSS scores were higher in group 2; SDMT was higher in group 1. As expected, volumetric analyses have shown volume loss in total cerebral white matter in follow-up patients (p < 0.001). In addition, putaminal volume loss was related to a higher number of attacks. Besides, a negative relation between FSS with total amygdala volumes, a link between atrophy of globus pallidus and ARR, and BDI scores was found with the aid of network analysis.

Conclusions Apart from a visual demonstration of volume loss, cranial MRI with volumetric analysis has a great potential for revealing covert links between segmental volume changes and clinical parameters.

Resumo

Objetivo Medir as diferenças de dominância craniana de 15 regiões diferentes no seguimento de pacientes com esclerose múltipla recorrente-remitente (EMRR) e correlacioná-las com parâmetros clínicos.

Métodos Quarenta e sete pacientes com EMRR foram incluídos no estudo. Os pacientes foram agrupados em duas categorias; EDSS baixo (< 3; grupo 1) e EDSS médio-alto (≥ 3; grupo 2). Os pacientes foram avaliados com o Inventário de Depressão de Beck (BDI, na sigla em inglês), Montreal Cognitive Assessment (MOCA, na sigla em inglês), Symbol Digit Modality Tests (SDMT, na sigla em inglês), Fatigue Severity Scale (FSS, na sigla em inglês) e taxa de ataque anual (ARR, na sigla em inglês). Duas ressonâncias magnéticas (RMs) foram feitas em um ano com um aparelho de imagem de 1,5 T MR (Magnetom AERA, Siemens, Erlangen, Alemanha). A análise de volume foi realizada com um software de medição mestre cerebral de RM gratuito e automatizado. As diferenças volumétricas entre os dois exames de RM foram calculadas e correlacionadas com os parâmetros demográficos e clínicos dos pacientes.

Resultados Número de crises, duração da doença, escores BDI e FSS foram mais elevados no grupo 2; as pontuações do SDMT foram maiores no grupo 1. Como esperado, as análises volumétricas mostraram perda total de volume de substância branca no seguimento (p < 0,001). Além disso, a perda da dominância putaminal foi associada ao maior número de ataques. Além disso, uma relação negativa entre FSS e volume total da amígdala, e uma correlação entre ARR e BDI e atrofia do globo pálido foi determinada com a ajuda da análise de rede.

Conclusões Além da demonstração visual da perda de volume, a RM com análise volumétrica tem grande potencial para revelar alterações segmentares dominantes e conexões ocultas entre parâmetros clínicos.

Authors' Contributions

NE: conceptualization, methodology, formal analysis, writing – original draft, writing – review & editing, visualization; AMK: conceptualization, methodology, formal analysis, writing – original draft, writing – review & editing; AK: conceptualization, methodology, formal analysis, supervision; ID: conceptualization, methodology, formal analysis, visualization; MAT: conceptualization, methodology, formal analysis, statistical analysis.




Publication History

Received: 18 August 2022

Accepted: 05 September 2022

Article published online:
22 March 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Sastre-Garriga J, Pareto D, Rovira À. Brain Atrophy in Multiple Sclerosis: Clinical Relevance and Technical Aspects. Neuroimaging Clin N Am 2017; 27 (02) 289-300
  • 2 Akudjedu TN, Nabulsi L, Makelyte M. et al. A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav 2018; 12 (06) 1678-1695
  • 3 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33 (11) 1444-1452
  • 4 Minden SL, Feinstein A, Kalb RC, Miller D, Mohr DC, Patten SB. et al. Evidence based guideline: assessment and management of psychiatric disorders in individuals with MS: report of the Guideline Development Subcommittee of the American Academy of Neurology. 2014; 82 (02) 174-181 https://doi.org/10.1212/WNL.000000000000001
  • 5 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53 (04) 695-699
  • 6 Parmenter BA, Weinstock-Guttman B, Garg N, Munschauer F, Benedict RHB. Screening for cognitive impairment in multiple sclerosis using the Symbol digit Modalities Test. Mult Scler 2007; 13 (01) 52-57
  • 7 Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989; 46 (10) 1121-1123
  • 8 Armutlu K, Korkmaz NC, Keser I. et al. The validity and reliability of the Fatigue Severity Scale in Turkish multiple sclerosis patients. Int J Rehabil Res 2007; 30 (01) 81-85
  • 9 Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods 2016; 264: 47-56
  • 10 Manjón JV, Coupé P. Volbrain: An online MRI brain volumetry system. Front Neuroinform 2016; 10: 30
  • 11 De Stefano N, Stromillo ML, Giorgio A. et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016; 87 (01) 93-99
  • 12 Lublin FD, Reingold SC, Cohen JA. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83 (03) 278-286
  • 13 Cadden MH, Guty ET, Arnett PA. Cognitive Reserve Attenuates the Effect of Disability on Depression in Multiple Sclerosis. Arch Clin Neuropsychol 2019; 34 (04) 495-502
  • 14 Yigit P, Acikgoz A, Mehdiyev Z, Dayi A, Ozakbas S. The relationship between cognition. depression. fatigue. and disability in patients with multiple sclerosis. Ir J Med Sci. 2021; 190 (03) 1129-1136 https://doi.org/10.1007/s11845-020-02377-2
  • 15 Ochoa-Morales A, Hernández-Mojica T, Paz-Rodríguez F. et al. Quality of life in patients with multiple sclerosis and its association with depressive symptoms and physical disability. Mult Scler Relat Disord 2019; 36: 101386
  • 16 Marciniewicz E, Podgórski P, Sąsiadek M, Bladowska J. The role of MR volumetry in brain atrophy assessment in multiple sclerosis: A review of the literature. Adv Clin Exp Med 2019; 28 (07) 989-999
  • 17 Voskuhl RR, Patel K, Paul F. et al. Sex differences in brain atrophy in multiple sclerosis. Biol Sex Differ 2020; 11 (01) 49
  • 18 Bisecco A, Stamenova S, Caiazzo G. et al. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav 2018; 12 (01) 20-28
  • 19 Popescu V, Agosta F, Hulst HE. et al; MAGNIMS Study Group. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2013; 84 (10) 1082-1091
  • 20 Magon S, Tsagkas C, Gaetano L. et al. Volume loss in the deep gray matter and thalamic subnuclei: a longitudinal study on disability progression in multiple sclerosis. J Neurol 2020; 267 (05) 1536-1546
  • 21 Radetz A, Koirala N, Krämer J. et al. Gray matter integrity predicts white matter network reorganization in multiple sclerosis. Hum Brain Mapp 2020; 41 (04) 917-927
  • 22 Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008; 64 (03) 255-265
  • 23 Eshaghi A, Marinescu RV, Young AL. et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018; 141 (06) 1665-1677
  • 24 Krämer J, Meuth SG, Tenberge JG, Schiffler P, Wiendl H, Deppe M. Early and degressive putamen atrophy in multiple sclerosis. Int J Mol Sci 2015; 16 (10) 23195-23209
  • 25 Hanken K, Francis Y, Kastrup A, Eling P, Klein J, Hildebrandt H. On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis. Mult Scler Relat Disord 2018; 20: 67-72
  • 26 Batista S, d'Almeida OC, Afonso A. et al. Impairment of social cognition in multiple sclerosis: Amygdala atrophy is the main predictor. Mult Scler 2017; 23 (10) 1358-1366
  • 27 Stuke H, Hanken K, Hirsch J. et al. Cross-sectional and longitudinal relationships between depressive symptoms and brain atrophy in MS patients. Front Hum Neurosci 2016; 10: 622
  • 28 Hong S, Hikosaka O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron 2008; 60 (04) 720-729