CC BY-NC-ND 4.0 · Semin Hear 2023; 44(01): 046-064
DOI: 10.1055/s-0043-1763294
Original Article

Wideband Acoustic Immittance in Children

1   School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada
,
Sreedevi Aithal
2   Department of Audiology, Townsville University Hospital, Townsville, Australia
3   School of Rehabilitation Sciences, University of Queensland, Queensland, Australia
4   School of Rehabilitation, James Cook University, Queensland, Australia
,
Gabriel A. Bargen
5   Department of Communication Sciences and Disorders, Idaho State University, Meridian, Idaho
› Institutsangaben

Abstract

As wideband absorbance (WBA) gains popularity, it is essential to understand the impact of different middle ear pathologies on the absorbance patterns as a function of frequency in children with various middle ear pathologies. More recently, the use of wideband tympanometry has enabled clinicians to conduct WBA at ambient pressure (WBAamb) as well as the pressurized mode (WBATPP). This article reviews evidence for the ability of WBA measurements to accurately characterize the normal middle ear function across a wide range of frequencies and to aid in differential diagnosis of common middle ear disorders in children. Absorbance results in cases of otitis media with effusion, negative middle ear pressure, Eustachian tube malfunction, middle ear tumors, and pressure equalization tubes will be compared to age-appropriate normative data. Where applicable, WBAamb as well as WBATPP will be reviewed in these conditions. The main objectives of this article are to identify, assess, and interpret WBAamb and WBATPP outcomes from various middle ear conditions in children between the ages of 3 and 12 years.

Disclosures

We have no known conflict of interest to disclose.




Publikationsverlauf

Artikel online veröffentlicht:
01. März 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Keefe DH, Bulen JC, Arehart KH, Burns EM. Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 1993; 94 (05) 2617-2638
  • 2 Beers AN, Shahnaz N, Westerberg BD, Kozak FK. Wideband reflectance in normal Caucasian and Chinese school-aged children and in children with otitis media with effusion. Ear Hear 2010; 31 (02) 221-233
  • 3 Keefe DH, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP. Wideband aural acoustic absorbance predicts conductive hearing loss in children. Int J Audiol 2012; 51 (12) 880-891
  • 4 Ellison JC, Gorga M, Cohn E, Fitzpatrick D, Sanford CA, Keefe DH. Wideband acoustic transfer functions predict middle-ear effusion. Laryngoscope 2012; 122 (04) 887-894
  • 5 Merchant GR, Al-Salim S, Tempero RM, Fitzpatrick D, Neely ST. Improving the differential diagnosis of otitis media with effusion using wideband acoustic immittance. Ear Hear 2021; 42 (05) 1183-1194
  • 6 Prieve BA, Feeney MP, Stenfelt S, Shahnaz N. Prediction of conductive hearing loss using wideband acoustic immittance. Ear Hear 2013; 34 (Suppl. 01) 54S-59S
  • 7 Hunter LL, Prieve BA, Kei J, Sanford CA. Pediatric applications of wideband acoustic immittance measures. Ear Hear 2013; 34 (Suppl. 01) 36S-42S
  • 8 Sanford CA, Brockett JE. Characteristics of wideband acoustic immittance in patients with middle-ear dysfunction. J Am Acad Audiol 2014; 25 (05) 425-440
  • 9 Won J, Monroy GL, Huang PC. et al. Assessing the effect of middle ear effusions on wideband acoustic immittance using optical coherence tomography. Ear Hear 2020; 41 (04) 811-824
  • 10 Voss SE, Merchant GR, Horton NJ. Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear Hear 2012; 33 (02) 195-208
  • 11 Aithal V, Aithal S, Kei J, Anderson S, Wright D. Predictive accuracy of wideband absorbance at ambient and tympanometric peak pressure conditions in identifying children with surgically confirmed otitis media with effusion. J Am Acad Audiol 2020; 31 (07) 471-484
  • 12 Hunter LL, Margolis RH. Effects of tympanic membrane abnormalities on auditory function. J Am Acad Audiol 1997; 8 (06) 431-446
  • 13 Piskorski P, Keefe DH, Simmons JL, Gorga MP. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory. J Acoust Soc Am 1999; 105 (03) 1749-1764
  • 14 Aithal S, Aithal V, Kei J, Manuel A. Effect of negative middle ear pressure and compensated pressure on wideband absorbance and otoacoustic emissions in children. J Speech Lang Hear Res 2019; 62 (09) 3516-3530
  • 15 Margolis RH, Saly GL, Keefe DH. Wideband reflectance tympanometry in normal adults. J Acoust Soc Am 1999; 106 (01) 265-280
  • 16 Liu YW, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH. Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. J Acoust Soc Am 2008; 124 (06) 3708-3719
  • 17 Sanford CA, Hunter LL, Feeney MP, Nakajima HH. Wideband acoustic immittance: tympanometric measures. Ear Hear 2013; 34 (Suppl. 01) 65S-71S
  • 18 Sun XM. Wideband acoustic immittance: normative study and test-retest reliability of tympanometric measurements in adults. J Speech Lang Hear Res 2016; 59 (04) 819-834
  • 19 Shahnaz N, Bork K. Wideband reflectance norms for Caucasian and Chinese young adults. Ear Hear 2006; 27 (06) 774-788
  • 20 Schilder AG, Chonmaitree T, Cripps AW. et al. Otitis media. Nat Rev Dis Primers 2016; 2 (01) 16063
  • 21 Tong S, Amand C, Kieffer A, Kyaw MH. Trends in healthcare utilization and costs associated with acute otitis media in the United States during 2008-2014. BMC Health Serv Res 2018; 18 (01) 318
  • 22 Friel-Patti S, Finitzo-Hieber T, Conti G, Brown KC. Language delay in infants associated with middle ear disease and mild, fluctuating hearing impairment. Pediatr Infect Dis 1982; 1 (02) 104-109
  • 23 Hubbard TW, Paradise JL, McWilliams BJ, Elster BA, Taylor FH. Consequences of unremitting middle-ear disease in early life. Otologic, audiologic, and developmental findings in children with cleft palate. N Engl J Med 1985; 312 (24) 1529-1534
  • 24 Roark R, Berman S. Continuous twice daily or once daily amoxicillin prophylaxis compared with placebo for children with recurrent acute otitis media. Pediatr Infect Dis J 1997; 16 (04) 376-381
  • 25 Conti-Ramsden G, Friel-Patti S. Mother-child dialogues: considerations of cognitive complexity for young language learning children. Br J Disord Commun 1986; 21 (02) 245-255
  • 26 Roland PS, Finitzo T, Friel-Patti S. et al. Otitis media. Incidence, duration, and hearing status. Arch Otolaryngol Head Neck Surg 1989; 115 (09) 1049-1053
  • 27 Sak RJ, Ruben RJ. Effects of recurrent middle ear effusion in preschool years on language and learning. J Dev Behav Pediatr 1982; 3 (01) 7-11
  • 28 Teele DW, Klein JO, Rosner BA. Otitis media with effusion during the first three years of life and development of speech and language. Pediatrics 1984; 74 (02) 282-287
  • 29 Tomlin D, Rance G. Long-term hearing deficits after childhood middle ear disease. Ear Hear 2014; 35 (06) e233-e242
  • 30 Wallace IF, Gravel JS, McCarton CM, Stapells DR, Bernstein RS, Ruben RJ. Otitis media, auditory sensitivity, and language outcomes at one year. Laryngoscope 1988; 98 (01) 64-70
  • 31 Margolis RH, Saly GL, Hunter LL. High-frequency hearing loss and wideband middle ear impedance in children with otitis media histories. Ear Hear 2000; 21 (03) 206-211
  • 32 Haggard M, Hughes E. A Review of the Literature and Implications of Otitis Media. HMSO; 1991. ISBN-13: ‎ 978–0113212101
  • 33 Tos M. Epidemiology and natural history of secretory otitis. Am J Otol 1984; 5 (06) 459-462
  • 34 Williamson IG, Dunleavey J, Bain J, Robinson D. The natural history of otitis media with effusion – a three-year study of the incidence and prevalence of abnormal tympanograms in four South West Hampshire infant and first schools. J Laryngol Otol 1994; 108 (11) 930-934
  • 35 Zielhuis GA, Rach GH, Van den Broek P. The occurrence of otitis media with effusion in Dutch pre-school children. Clin Otolaryngol Allied Sci 1990; 15 (02) 147-153
  • 36 Klein JO. The burden of otitis media. Vaccine 2000; 19 (Suppl. 01) S2-S8
  • 37 Pichichero ME, Poole MD. Comparison of performance by otolaryngologists, pediatricians, and general practitioners on an otoendoscopic diagnostic video examination. Int J Pediatr Otorhinolaryngol 2005; 69 (03) 361-366
  • 38 Nozza RJ, Bluestone CD, Kardatzke D, Bachman R. Towards the validation of aural acoustic immittance measures for diagnosis of middle ear effusion in children. Ear Hear 1992; 13 (06) 442-453
  • 39 Nozza RJ, Bluestone CD, Kardatzke D, Bachman R. Identification of middle ear effusion by aural acoustic admittance and otoscopy. Ear Hear 1994; 15 (04) 310-323
  • 40 Anwar K, Khan S, Rehman HU, Javaid M, Shahabi I. Otitis media with effusion: accuracy of tympanometry in detecting fluid in the middle ears of children at myringotomies. Pak J Med Sci 2016; 32 (02) 466-470
  • 41 Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol 1970; 92 (04) 311-324
  • 42 Margolis RH, Hunter LL, Giebink GS. Tympanometric evaluation of middle ear function in children with otitis media. Ann Otol Rhinol Laryngol Suppl 1994; 163: 34-38
  • 43 Al-Salim S, Tempero RM, Johnson H, Merchant GR. Audiologic profiles of children with otitis media with effusion. Ear Hear 2021; 42 (05) 1195-1207
  • 44 Rosenfeld RM, Shin JJ, Schwartz SR. et al. Clinical practice guideline: otitis media with effusion (update). Otolaryngol Head Neck Surg 2016; 154 (1, Suppl): S1-S41
  • 45 Sassen ML, van Aarem A, Grote JJ. Validity of tympanometry in the diagnosis of middle ear effusion. Clin Otolaryngol Allied Sci 1994; 19 (03) 185-189
  • 46 Voss SE. Resource review. Ear Hear 2019; 40 (06) 1481
  • 47 Margolis RH, Paul S, Saly GL, Schachern PA, Keefe DH. Wideband reflectance tympanometry in chinchillas and human. J Acoust Soc Am 2001; 110 (3, Pt 1): 1453-1464
  • 48 Bluestone CD, Keline JO. Otitis Media in Infants and Children. 4th ed.. Hamilton, Ontario, Canada: BC Decker; 2007
  • 49 Lildholdt T. Negative middle ear pressure. Variations by season and sex. Ann Otol Rhinol Laryngol Suppl 1980; 89 (3, Pt 2): 67-70
  • 50 Aithal S, Aithal V, Kei J, Anderson S, Liebenberg S. Eustachian tube dysfunction and wideband absorbance measurements at tympanometric peak pressure and 0 daPa. J Am Acad Audiol 2019; 30 (09) 781-791
  • 51 Alper C, Olszewska E. Assessment and management of retraction pockets. Otolaryngol Pol 2017; 71 (01) 1-21
  • 52 Rosito LPS, Sperling N, Teixeira AR, Selaimen FA, da Costa SS. The role of tympanic membrane retractions in cholesteatoma pathogenesis. BioMed Res Int 2018; 2018: 9817123
  • 53 Sadé J, Avraham S, Brown M. Atelectasis, retraction pockets and cholesteatoma. Acta Otolaryngol 1981; 92 (5-6): 501-512
  • 54 Wells MD, Michaels L. Role of retraction pockets in cholesteatoma formation. Clin Otolaryngol Allied Sci 1983; 8 (01) 39-45
  • 55 Zheng Y, Ou Y, Yang H, Liu X, Chen S, Liu W. [Clinical manifestation of attic retraction pocket]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 2005; 19 (16) 737-739
  • 56 Pau HW, Punke C, Just T. Tympanometric experiments on retracted ear drums–does tympanometry reflect the true middle ear pressure?. Acta Otolaryngol 2009; 129 (10) 1080-1087
  • 57 Isaacson G. Diagnosis of pediatric cholesteatoma. Pediatrics 2007; 120 (03) 603-608
  • 58 Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Rev Bras Otorrinolaringol (Engl Ed) 2011; 77 (03) 341-347
  • 59 Kemppainen HO, Puhakka HJ, Laippala PJ, Sipilä MM, Manninen MP, Karma PH. Epidemiology and aetiology of middle ear cholesteatoma. Acta Otolaryngol 1999; 119 (05) 568-572
  • 60 Kuo CL, Shiao AS, Yung M. et al. Updates and knowledge gaps in cholesteatoma research. BioMed Res Int 2015; 2015: 854024
  • 61 Tos M. Incidence, etiology and pathogenesis of cholesteatoma in children. Adv Otorhinolaryngol 1988; 40: 110-117
  • 62 Martins O, Victor J, Selesnick S. The relationship between individual ossicular status and conductive hearing loss in cholesteatoma. Otol Neurotol 2012; 33 (03) 387-392
  • 63 Rosito LP, Teixeira AR, Netto LS, Selaimen FA, da Costa SS. Cholesteatoma growth patterns: are there audiometric differences between posterior epitympanic and posterior mesotympanic cholesteatoma?. Eur Arch Otorhinolaryngol 2016; 273 (10) 3093-3099
  • 64 Aithal S, Aithal V, Kei J, Anderson S. Wideband absorbance in ears with retraction pockets and cholesteatomas: a preliminary study. J Am Acad Audiol 2020; 31 (10) 708-718
  • 65 Nakajima HH, Rosowski JJ, Shahnaz N, Voss SE. Assessment of ear disorders using power reflectance. Ear Hear 2013; 34 Suppl 1 (701) 48S-53S
  • 66 Manickam V, Shott GS, Heithaus D, Shott SR. Hearing loss in Down syndrome revisited - 15 years later. Int J Pediatr Otorhinolaryngol 2016; 88: 203-207
  • 67 Park AH, Wilson MA, Stevens PT, Harward R, Hohler N. Identification of hearing loss in pediatric patients with Down syndrome. Otolaryngol Head Neck Surg 2012; 146 (01) 135-140
  • 68 Hunter LL, Keefe DH, Feeney MP. et al. Wideband acoustic immittance in children with Down syndrome: prediction of middle-ear dysfunction, conductive hearing loss and patent PE tubes. Int J Audiol 2017; 56 (09) 622-634