Synthesis, Inhaltsverzeichnis Synthesis 2024; 56(11): 1702-1710DOI: 10.1055/s-0043-1763660 paper New Trends in Organic Synthesis from Chinese Chemists Photoredox-Catalyzed C(sp3)–H Difluoroallylation of Amides Yanmei Lin , Xiaomin Shu , Haohua Huo ∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A photoredox-catalyzed, bromine-radical-mediated C(sp3)–H difluoroallylation of amides is disclosed. This modular approach exploits the hydrogen atom transfer (HAT) ability of photooxidatively generated bromine radicals to convert both cyclic and acyclic amides into the corresponding α-amino alkyl radicals that then are coupled with readily available trifluoromethyl alkenes. This method is distinguished by its mild conditions, broad substrate scope (30 examples), and the use of a simple HAT reagent, namely sodium bromide (NaBr). This strategy offers a promising paradigm for the incorporation of carbonyl isosteres into saturated aliphatic amines. Key words Key wordsphotoredox catalysis - HAT - difluoroallylation - amides - bromine radical Volltext Referenzen References 1a Leriche C, He X, Chang C.-wT, Liu H.-w. J. Am. Chem. Soc. 2003; 125: 6348 1b Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292 1c Altenburger J.-M, Lassalle GY, Matrougui M, Galtier D, Jetha J.-C, Bocskei Z, Berry CN, Lunven C, Lorrain J, Herault J.-P, Schaeffer P, O’Connor SE, Herbert J.-M. Bioorg. Med. Chem. 2004; 12: 1713 1d Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Fluorine Chem. 2006; 127: 637 1e Meanwell NA. J. Med. Chem. 2011; 54: 2529 2a Chelucci G. Chem. Rev. 2012; 112: 1344 2b Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496 2c Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375 2d Ji X, Liu Y, Shi H, Cao S. Tetrahedron 2018; 74: 4155 2e Wang M, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. J. Am. Chem. Soc. 2018; 140: 9061 2f Xiong B, Wang T, Sun H, Li Y, Kramer S, Cheng G.-J, Lian Z. ACS Catal. 2020; 10: 13616 2g Yao C, Wang S, Norton J, Hammond M. J. Am. Chem. Soc. 2020; 142: 4793 2h Zhu C, Liu Z.-Y, Tang L, Zhang H, Zhang Y.-F, Walsh PJ, Feng C. Nat. Commun. 2020; 11: 4860 2i Chen F, Xu X, He Y, Huang G, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 5398 2j Du H.-W, Chen Y, Sun J, Gao Q.-S, Wang H, Zhou M.-D. Org. Lett. 2020; 22: 9342 2k Ma T, Li X, Ping Y, Kong W. Chin. J. Chem. 2022; 40: 2212 3a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102 3b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322 3c Gui Y.-Y, Sun L, Lu Z.-P, Yu D.-G. Org. Chem. Front. 2016; 3: 522 3d Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563 3e Liu Y, Dong W. Chin. J. Chem. 2017; 35: 1491 3f Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052 3g Tan F, Yin G. Chin. J. Chem. 2018; 36: 545 3h Cao Y, He X, Wang N, Li H.-R, He L.-N. Chin. J. Chem. 2018; 36: 644 3i Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152 3j Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170 3k Li S, Xiang S.-H, Tan B. Chin. J. Chem. 2020; 38: 213 3l Bertuzzi G, Cerveri A, Lombardi L, Bandini M. Chin. J. Chem. 2021; 39: 3116 3m Li Z, Li C, Ding Y, Huo H. Coord. Chem. Rev. 2022; 460: 214479 3n Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543 3o Li T, Li J, Huo H. Chin. J. Chem. 2023; 41: 544 4a Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908 4b Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073 4c Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658 4d He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769 4e Wiles RJ, Phelan JP, Molander GA. Chem. Commun. 2019; 55: 7599 4f Li C.-Y, Ma Y, Lei Z.-W, Hu X.-G. Org. Lett. 2021; 23: 8899 4g Liu Y, Tao X, Mao Y, Yuan X, Qiu J, Kong L, Ni S, Guo K, Wang Y, Pan Y. Nat. Commun. 2021; 12: 6745 4h Cai Z, Gu R, Si W, Xiang Y, Sun J, Jiao Y, Zhang X. Green Chem. 2022; 24: 6830 4i Zhou L. Molecules 2021; 26: 7051 4j Zhu C.-M, Liang R.-B, Xiao Y, Zhou W, Tong Q.-X, Zhong J.-J. Green Chem. 2023; 25: 960 5a Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371 5b Guo Y.-Q, Wu Y, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2021; 23: 2353 5c Yue W.-J, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395 5d Hu Q.-P, Cheng J, Wang Y, Shi J, Wang B.-Q, Hu P, Zhao K.-Q, Pan F. Org. Lett. 2021; 23: 4457 5e Bao Y, Tang M, Wang Q, Cao Z.-Y, Wang Y, Yuan Z. J. Org. Chem. 2023; 88: 3883 5f Yuan Z.-H, Xin H, Zhang L, Gao P, Yang X, Duan X.-H, Guo L.-N. Green Chem. 2023; 25: 6733 6a Shu X, Huan L, Huang Q, Huo H. J. Am. Chem. Soc. 2020; 142: 19058 6b Huan L, Shu X, Zu W, Zhong D, Huo H. Nat. Commun. 2021; 12: 3536 6c Zhang W, Shu X, Huan L, Cheng B, Huo H. Org. Biomol. Chem. 2021; 19: 9407 6d Xu J, Li Z, Xu Y, Shu X, Huo H. ACS Catal. 2021; 11: 13567 6e Shu X, Zhong D, Lin Y, Qin X, Huo H. J. Am. Chem. Soc. 2022; 144: 8797 6f Shu X, Zhong D, Huang Q, Huan L, Huo H. Nat. Commun. 2023; 14: 125 7a He Y, Bian K.-J, Wu B.-B, Liu P, Ni S.-X, Wang X.-S. Chin. J. Chem. 2022; 40: 1531 7b Feng J, Zhang F, Shu C, Zhu G. Chin. J. Chem. 2022; 40: 1667 8a Zhang P, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084 8b Kwon K, Simons RT, Nandakumar M, Roizen JL. Chem. Rev. 2022; 122: 2353 9a Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366 9b Jia P, Li Q, Poh WC, Jiang H, Liu H, Deng H, Wu J. Chem 2020; 6: 1766 9c Tomono R, Kawasaki T, Ishida N, Murakami M. Chem. Lett. 2021; 50: 1972 9d Ishida N, Son M, Kawasaki T, Ito M, Murakami M. Synlett 2021; 32: 2067 9e Bonciolini S, Noël T, Capaldo L. Eur. J. Org. Chem. 2022; 2022: e202200417 9f Rand AW, Chen M, Montgomery J. Chem. Sci. 2022; 13: 10566 9g Zhao H, Hu Y, Zheng S, Yuan W. Org. Lett. 2023; 25: 6699 Zusatzmaterial Zusatzmaterial Supporting Information