RSS-Feed abonnieren

DOI: 10.1055/s-0043-1764303
PET/MRI Applications in Pediatric Epilepsy

Abstract
Epilepsy neuroimaging assessment requires exceptional anatomic detail, physiologic and metabolic information. Magnetic resonance (MR) protocols are often time-consuming necessitating sedation and positron emission tomography (PET)/computed tomography (CT) comes with a significant radiation dose. Hybrid PET/MRI protocols allow for exquisite assessment of brain anatomy and structural abnormalities, in addition to metabolic information in a single, convenient imaging session, which limits radiation dose, sedation time, and sedation events. Brain PET/MRI has proven especially useful for accurate localization of epileptogenic zones in pediatric seizure cases, providing critical additional information and guiding surgical decision making in medically refractory cases. Accurate localization of seizure focus is necessary to limit the extent of the surgical resection, preserve healthy brain tissue, and achieve seizure control. This review provides a systematic overview with illustrative examples demonstrating the applications and diagnostic utility of PET/MRI in pediatric epilepsy.
Keywords
hybrid imaging - PET/MRI - pediatric epilepsy - malformations of cortical development - focal cortical dysplasia - temporal lobe epilepsy - mesial temporal sclerosis - tuberous sclerosisPublikationsverlauf
Artikel online veröffentlicht:
28. April 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Aaberg KM, Gunnes N, Bakken IJ. et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics 2017; 139 (05) e20163908
- 2 Fine A, Wirrell EC. Seizures in children. Pediatr Rev 2020; 41 (07) 321-347
- 3 Sultana B, Panzini MA, Veilleux Carpentier A. et al. Incidence and prevalence of drug-resistant epilepsy: a systematic review and meta-analysis. Neurology 2021; 96 (17) 805-817
- 4 Engel Jr J. The current place of epilepsy surgery. Curr Opin Neurol 2018; 31 (02) 192-197
- 5 Dwivedi R, Ramanujam B, Chandra PS. et al. Surgery for drug-resistant epilepsy in children. N Engl J Med 2017; 377 (17) 1639-1647
- 6 Duchowny M, Levin B, Jayakar P. et al. Temporal lobectomy in early childhood. Epilepsia 1992; 33 (02) 298-303
- 7 Hyslop A, Miller I, Bhatia S, Resnick T, Duchowny M, Jayakar P. Minimally resective epilepsy surgery in MRI-negative children. Epileptic Disord 2015; 17 (03) 263-274
- 8 Ollenberger GP, Byrne AJ, Berlangieri SU. et al. Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med Mol Imaging 2005; 32 (11) 1311-1316
- 9 Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005; 4 (01) 42-53
- 10 Lagarde S, Boucekine M, McGonigal A. et al. Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 2020; 47 (13) 3130-3142
- 11 D'Agostino MD, Bernasconi A, Das S. et al. Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain 2002; 125 (Pt 11): 2507-2522
- 12 Rubí S, Setoain X, Donaire A. et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 2011; 52 (12) 2216-2224
- 13 Salamon N, Kung J, Shaw SJ. et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008; 71 (20) 1594-1601
- 14 Traub-Weidinger T, Muzik O, Sundar LKS. et al. Utility of absolute quantification in non-lesional extratemporal lobe epilepsy using FDG PET/MR imaging. Front Neurol 2020; 11: 54
- 15 Ryvlin P, Bouvard S, Le Bars D. et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998; 121 (Pt 11): 2067-2081
- 16 Kumar A, Asano E, Chugani HT. α-[11C]-methyl-L-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies. Biomarkers Med 2011; 5 (05) 577-584
- 17 Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment?. Eur J Nucl Med Mol Imaging 2021; 49 (01) 221-233
- 18 Lee DS, Lee JS, Kang KW. et al. Disparity of perfusion and glucose metabolism of epileptogenic zones in temporal lobe epilepsy demonstrated by SPM/SPAM analysis on 15O water PET, [18F]FDG-PET, and [99mTc]-HMPAO SPECT. Epilepsia 2001; 42 (12) 1515-1522
- 19 Paldino MJ, Yang E, Jones JY. et al. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study. Pediatr Radiol 2017; 47 (11) 1500-1507
- 20 Kikuchi K, Togao O, Yamashita K. et al. Diagnostic accuracy for the epileptogenic zone detection in focal epilepsy could be higher in FDG-PET/MRI than in FDG-PET/CT. Eur Radiol 2021; 31 (05) 2915-2922
- 21 Daldrup-Link H. How PET/MR can add value for children with cancer. Curr Radiol Rep 2017; 5 (03) 15
- 22 Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 2013; 268 (01) 190-199
- 23 Broski SM, Goenka AH, Kemp BJ, Johnson GB. Clinical PET/MRI: 2018 update. AJR Am J Roentgenol 2018; 211 (02) 295-313
- 24 Bernasconi A, Cendes F, Theodore WH. et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 2019; 60 (06) 1054-1068
- 25 Knake S, Triantafyllou C, Wald LL. et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 2005; 65 (07) 1026-1031
- 26 Boerwinkle VL, Mohanty D, Foldes ST. et al. Correlating resting-state functional magnetic resonance imaging connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localized seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect 2017; 7 (07) 424-442
- 27 Boerwinkle VL, Mirea L, Gaillard WD. et al. Resting-state functional MRI connectivity impact on epilepsy surgery plan and surgical candidacy: prospective clinical work. J Neurosurg Pediatr 2020; 1-8
- 28 Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008; 7 (08) 715-727
- 29 Ahmadi ME, Hagler Jr DJ, McDonald CR. et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am J Neuroradiol 2009; 30 (09) 1740-1747
- 30 Rosazza C, Deleo F, D'Incerti L. et al. Tracking the re-organization of motor functions after disconnective surgery: a longitudinal fMRI and DTI study. Front Neurol 2018; 9: 400
- 31 Kiehna EN, Widjaja E, Holowka S. et al. Utility of diffusion tensor imaging studies linked to neuronavigation and other modalities in repeat hemispherotomy for intractable epilepsy. J Neurosurg Pediatr 2016; 17 (04) 483-490
- 32 Chang DJ, Zubal IG, Gottschalk C. et al. Comparison of statistical parametric mapping and SPECT difference imaging in patients with temporal lobe epilepsy. Epilepsia 2002; 43 (01) 68-74
- 33 von Oertzen TJ, Mormann F, Urbach H. et al. Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 2011; 52 (12) 2239-2248
- 34 Hauptman JS, Mathern GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia 2012; 53 (Suppl. 04) 98-104
- 35 Palmini A, Holthausen H. Focal malformations of cortical development: a most relevant etiology of epilepsy in children. Handb Clin Neurol 2013; 111: 549-565
- 36 Lerner JT, Salamon N, Hauptman JS. et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50 (06) 1310-1335
- 37 Kim YH, Kang HC, Kim DS. et al. Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery. Epilepsia 2011; 52 (04) 722-727
- 38 Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure 2020; 77: 15-28
- 39 Shang K, Wang J, Fan X. et al. Clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing seizure focus in patients with MRI-negative temporal lobe epilepsy. Am J Neuroradiol 2018; 39 (10) 1791-1798
- 40 Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol Imaging Biol 2002; 4 (05) 338-351
- 41 Gok B, Jallo G, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 2013; 55 (05) 541-550
- 42 Sinclair DB, Wheatley M, Aronyk K. et al. Pathology and neuroimaging in pediatric temporal lobectomy for intractable epilepsy. Pediatr Neurosurg 2001; 35 (05) 239-246
- 43 Yang PF, Pei JS, Zhang HJ. et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav 2014; 41: 91-97
- 44 Curatolo P, Bombardieri R, Verdecchia M, Seri S. Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J Child Neurol 2005; 20 (04) 318-325
- 45 Capraz IY, Kurt G, Akdemir Ö. et al. Surgical outcome in patients with MRI-negative, PET-positive temporal lobe epilepsy. Seizure 2015; 29: 63-68
- 46 Arya R, Mangano FT, Horn PS. et al. Long-term seizure outcomes after pediatric temporal lobectomy: does brain MRI lesion matter?. J Neurosurg Pediatr 2019; 24 (02) 200-208
- 47 Evans LT, Morse R, Roberts DW. Epilepsy surgery in tuberous sclerosis: a review. Neurosurg Focus 2012; 32 (03) E5
- 48 Jarrar RG, Buchhalter JR, Raffel C. Long-term outcome of epilepsy surgery in patients with tuberous sclerosis. Neurology 2004; 62 (03) 479-481
- 49 Asano E, Chugani DC, Muzik O. et al. Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology 2000; 54 (10) 1976-1984
- 50 Rintahaka PJ, Chugani HT. Clinical role of positron emission tomography in children with tuberous sclerosis complex. J Child Neurol 1997; 12 (01) 42-52
- 51 Kalantari BN, Salamon N. Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. Am J Roentgenol 2008; 190 (05) W304-9
- 52 Chandra PS, Salamon N, Huang J. et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 2006; 47 (09) 1543-1549
- 53 Aboian MS, Wong-Kisiel LC, Rank M, Wetjen NM, Wirrell EC, Witte RJ. SISCOM in children with tuberous sclerosis complex-related epilepsy. Pediatr Neurol 2011; 45 (02) 83-88
- 54 Lachhwani DK, Pestana E, Gupta A, Kotagal P, Bingaman W, Wyllie E. Identification of candidates for epilepsy surgery in patients with tuberous sclerosis. Neurology 2005; 64 (09) 1651-1654
- 55 Verdinelli C, Olsson I, Edelvik A, Hallböök T, Rydenhag B, Malmgren K. A long-term patient perspective after hemispherotomy–a population based study. Seizure 2015; 30: 76-82
- 56 Moosa AN, Gupta A, Jehi L. et al. Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology 2013; 80 (03) 253-260
- 57 Ji T, Liu M, Wang S. et al. Seizure outcome and its prognostic predictors after hemispherotomy in children with refractory epilepsy in a Chinese pediatric epileptic center. Front Neurol 2019; 10: 880
- 58 Kelley BP, Patel SC, Marin HL, Corrigan JJ, Mitsias PD, Griffith B. Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol 2017; 38 (06) 1070-1078