RSS-Feed abonnieren
DOI: 10.1055/s-0043-1764416
Exploring clinical outcomes in patients with idiopathic/inherited isolated generalized dystonia and stimulation of the subthalamic region
Explorando os desfechos clínicos em pacientes com distonia idiopática/hereditária generalizada isolada submetidos a estimulação da região subtalâmicaAbstract
Background Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable.
Objective To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement.
Methods The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects.
Results Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00–98.00) and 20.60 ± 7.80 (13.00–32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003).
Conclusions These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.
Resumo
Antecedentes A estimulação cerebral profunda (ECP) é um tratamento estabelecido para distonias refratárias. Porém, a melhora dos pacientes é variável.
Objetivo O objetivo do estudo foi descrever os desfechos da ECP da região do núcleo subtalâmico (NST) e determinar se o volume de tecido ativado (VTA) dentro do NST ou se a conectividade estrutural entre a área estimulada e diferentes regiões cerebrais estão associadas a melhora da distonia.
Métodos A resposta da ECP em pacientes com distonia generalizada isolada de etiologia hereditária/idiopática foi mensurada pela escala de Burke-Fahr-Marsden Dystonia Rating Scale (BFM) antes e 7 meses após a cirurgia. A soma dos volumes do NST nos dois hemisférios foi correlacionada com a melhora nos escores do BFM para avaliar se a área estimulada dentro do NST afeta o desfecho clínico. A conectividade estrutural estimada entre o VTA de cada paciente e as diferentes regiões cerebrais foram computadas usando um conectoma normativo retirado de indivíduos saudáveis.
Resultados Cinco pacientes com idade de 40,00 ± 7,30 anos foram incluídos. O BFM motor e de incapacidade basal eram de 78,30 ± 13,55 (62,00–98,00) e 20,60 ± 7,80 (13,00–32,00), respectivamente. Os pacientes melhoraram com a cirurgia, mas com variabilidade. Não houve relação entre o VTA dentro do NST e a melhora do BFM após a cirurgia (p = 0.463). Entretanto, a conectividade estrutural entre o VTA e o cerebelo correlacionaram com a melhora da distonia (p = 0.003).
Conclusão Os dados sugerem que o VTA dentro do NST não explica a variabilidade do desfecho clínico na distonia. Porém, o padrão de conectividade entre a região estimulada e o cerebelo foi relacionada com o desfecho dos pacientes.
Palavras-chave
Estimulação Encefálica Profunda - Distonia - Cerebelo - Núcleo Subtalâmico - ConectomaAuthors' Contributions
CL: data curation, formal analysis, investigation, writing – original draft preparation; DJL, RI: formal analysis, writing – original draft preparation; SCBC: data curation, investigation; ERB: supervision, writing – review and editing; FG, KPD: writing – review and editing; MJT: methodology, writing – review and editing; RGC: methodology, project administration, supervision, writing – review and editing.
Publikationsverlauf
Eingereicht: 07. Mai 2022
Angenommen: 10. November 2022
Artikel online veröffentlicht:
14. April 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Vidailhet M, Vercueil L, Houeto JL. et al; French Stimulation du Pallidum Interne dans la Dystonie (SPIDY) Study Group. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005; 352 (05) 459-467
- 2 Kupsch A, Benecke R, Müller J. et al; Deep-Brain Stimulation for Dystonia Study Group. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006; 355 (19) 1978-1990
- 3 Volkmann J, Wolters A, Kupsch A. et al; DBS study group for dystonia. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol 2012; 11 (12) 1029-1038
- 4 Schrader C, Capelle HH, Kinfe TM. et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology 2011; 77 (05) 483-488
- 5 Moro E, LeReun C, Krauss JK. et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol 2017; 24 (04) 552-560
- 6 Chung M, Huh R. Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 2016; 158 (01) 171-180 , discussion 180
- 7 Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11: 630391
- 8 Tsuboi T, Wong JK, Almeida L. et al. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020; 267 (05) 1278-1290
- 9 Brito M, Teixeira MJ, Mendes MM. et al. Exploring the clinical outcomes after deep brain stimulation in Tourette syndrome. J Neurol Sci 2019; 402: 48-51
- 10 Horn A, Reich M, Vorwerk J. et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017; 82 (01) 67-78
- 11 Albanese A, Bhatia K, Bressman SB. et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013; 28 (07) 863-873
- 12 Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44 (04) 625-632
- 13 Bick AS, Mayer A, Levin N. From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci 2012; 312 (1-2): 158-165
- 14 Dimou S, Battisti RA, Hermens DF, Lagopoulos J. A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 2013; 36 (02) 205-214 , discussion 214
- 15 Potgieser AR, Wagemakers M, van Hulzen AL, de Jong BM, Hoving EW, Groen RJ. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg 2014; 124: 51-58
- 16 Calabrese E. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review. Front Neuroanat 2016; 10: 45
- 17 Bot M, Schuurman PR, Odekerken VJJ. et al. Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus. J Neurol Neurosurg Psychiatry 2018; 89 (05) 493-498
- 18 Rabie A, Verhagen Metman L, Slavin KV. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide?. Brain Sci 2016; 6 (04) 65
- 19 Slavin KV, Thulborn KR, Wess C, Nersesyan H. Direct visualization of the human subthalamic nucleus with 3T MR imaging. AJNR Am J Neuroradiol 2006; 27 (01) 80-84
- 20 Starr PA, Christine CW, Theodosopoulos PV. et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002; 97 (02) 370-387
- 21 Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011; 54 (03) 2033-2044
- 22 Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Brain Development Cooperative Group. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 2011; 54 (01) 313-327
- 23 Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12 (01) 26-41
- 24 Husch A, Petersen MV, Gemmar P, Goncalves J, Hertel F. PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin 2017; 17: 80-89
- 25 Baniasadi M, Proverbio D, Gonçalves J, Hertel F, Husch A. FastField: An open-source toolbox for efficient approximation of deep brain stimulation electric fields. Neuroimage 2020; 223: 117330
- 26 Horn A, Ostwald D, Reisert M, Blankenburg F. The structural-functional connectome and the default mode network of the human brain. Neuroimage 2014; 102 (Pt 1): 142-151
- 27 Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage 2020; 206: 116189
- 28 Hammers A, Allom R, Koepp MJ. et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2003; 19 (04) 224-247
- 29 Feng L, Yin D, Wang X. et al. Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia. Eur J Neurol 2021; 28 (05) 1537-1547
- 30 McCambridge AB, Bradnam LV. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci 2021; 53 (04) 1300-1323
- 31 Tewari A, Fremont R, Khodakhah K. It's not just the basal ganglia: Cerebellum as a target for dystonia therapeutics. Mov Disord 2017; 32 (11) 1537-1545
- 32 Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain 1998; 121 (Pt 7): 1195-1212
- 33 Holmes AL, Forcelli PA, DesJardin JT. et al. Superior colliculus mediates cervical dystonia evoked by inhibition of the substantia nigra pars reticulata. J Neurosci 2012; 32 (38) 13326-13332
- 34 Lin S, Wu Y, Li H. et al. Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia. J Neurosurg 2019; 132 (03) 721-732
- 35 Schjerling L, Hjermind LE, Jespersen B. et al. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia. J Neurosurg 2013; 119 (06) 1537-1545
- 36 Wu YS, Ni LH, Fan RM, Yao MY. Meta-Regression Analysis of the Long-Term Effects of Pallidal and Subthalamic Deep Brain Stimulation for the Treatment of Isolated Dystonia. World Neurosurg 2019; 129: e409-e416
- 37 Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15: 757579
- 38 Zhang F, Wang F, Li W. et al. Relationship between electrode position of deep brain stimulation and motor symptoms of Parkinson's disease. BMC Neurol 2021; 21 (01) 122
- 39 Ren H, Wen R, Wang W. et al. Long-term efficacy of GPi DBS for craniofacial dystonia: a retrospective report of 13 cases. Neurosurg Rev 2022; 45 (01) 673-682
- 40 Rozanski VE, Vollmar C, Cunha JP. et al. Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 2014; 84: 435-442
- 41 Raghu ALB, Eraifej J, Sarangmat N. et al. Pallido-putaminal connectivity predicts outcomes of deep brain stimulation for cervical dystonia. Brain 2021; 144 (12) 3589-3596
- 42 Jochim A, Li Y, Gora-Stahlberg G. et al. Altered functional connectivity in blepharospasm/orofacial dystonia. Brain Behav 2017; 8 (01) e00894
- 43 Ma LY, Wang ZJ, Ma HZ, Feng T. Hyper- and hypo-connectivity in sensorimotor network of drug-naïve patients with cervical dystonia. Parkinsonism Relat Disord 2021; 90: 15-20
- 44 Moore RD, Gallea C, Horovitz SG, Hallett M. Individuated finger control in focal hand dystonia: an fMRI study. Neuroimage 2012; 61 (04) 823-831
- 45 Porcacchia P, Álvarez de Toledo P, Rodríguez-Baena A. et al. Abnormal cerebellar connectivity and plasticity in isolated cervical dystonia. PLoS One 2019; 14 (01) e0211367
- 46 Horisawa S, Arai T, Suzuki N, Kawamata T, Taira T. The striking effects of deep cerebellar stimulation on generalized fixed dystonia: case report. J Neurosurg 2019; 132 (03) 712-716
- 47 Horn A, Reich MM, Ewert S. et al. Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119 (14) e2114985119