Subscribe to RSS

DOI: 10.1055/s-0043-1767819
Anti-inflammatory strategies for hepatic encephalopathy: preclinical studies
Estratégias anti-inflamatórias para encefalopatia hepática: estudos pré-clínicos
Abstract
Hepatic encephalopathy (HE) is a potentially reversible neuropsychiatric syndrome. Often, HE causes cognitive and motor dysfunctions due to an acute or chronic insufficiency of the liver or a shunting between the hepatic portal vein and systemic vasculature. Liver damage induces peripheral changes, such as in the metabolism and peripheral inflammatory responses that trigger exacerbated neuroinflammation. In experimental models, anti-inflammatory strategies have demonstrated neuroprotective effects, leading to a reduction in HE-related cognitive and motor impairments. In this scenario, a growing body of evidence has shown that peripheral and central nervous system inflammation are promising preclinical targets. In this review, we performed an overview of FDA-approved drugs and natural compounds which are used in the treatment of other neurological and nonneurological diseases that have played a neuroprotective role in experimental HE, at least in part, through anti-inflammatory mechanisms. Despite the exciting results from animal models, the available data should be critically interpreted, highlighting the importance of translating the findings for clinical essays.
Resumo
A encefalopatia hepática (EH) é uma síndrome neuropsiquiátrica potencialmente reversível. Muitas vezes a EH causa disfunções cognitivas e motoras devido à insuficiência do fígado ou por um desvio entre a veia porta hepática e a vasculatura sistêmica. O dano no fígado provoca alterações periféricas, como no metabolismo e nas respostas inflamatórias periféricas, que desencadeiam uma neuroinflamação exacerbada. Em modelos experimentais, estratégias anti-inflamatórias têm demonstrado efeitos neuroprotetores, levando a uma redução dos prejuízos cognitivos e motores relacionados à EH. Neste cenário, evidências crescentes têm mostrado a inflamação periférica e no sistema nervoso central como um promissor alvo pré-clínico. Nesta revisão, abordamos uma visão geral de drogas e compostos naturais aprovados pelo FDA para o uso no tratamento de outras doenças neurológicas e não neurológicas, que tiveram papel neuroprotetor na EH experimental, pelo menos em parte, através de mecanismos anti-inflamatórios. Apesar dos resultados empolgantes em modelos animais, os dados avaliados devem ser criticamente interpretados, destacando a importância da tradução dos achados para ensaios clínicos.
Palavras-chave
Encefalopatia Hepática - Doenças Neuroinflamatórias - Neuroproteção - Modelos AnimaisAuthors' Contributions
RPCS, ECBT, MAR: idea; RPCS: literature research; RPCS, ECBT: draft; ECBT, MAR: critical review, both authors contributed equally.
Support
We are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (311290/2021–3) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support.
Publication History
Received: 08 August 2022
Accepted: 03 December 2022
Article published online:
24 July 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Lee GH. Hepatic encephalopathy in acute-on-chronic liver failure. Hepatol Int 2015; 9 (04) 520-526
- 2 Yanny B, Winters A, Boutros S, Saab S. Hepatic Encephalopathy Challenges, Burden, and Diagnostic and Therapeutic Approach. Clin Liver Dis 2019; 23 (04) 607-623
- 3 Neff G, Zachry III W. Systematic Review of the Economic Burden of Overt Hepatic Encephalopathy and Pharmacoeconomic Impact of Rifaximin. PharmacoEconomics 2018; 36 (07) 809-822
- 4 Poordad FF. Review article: the burden of hepatic encephalopathy. Aliment Pharmacol Ther 2007; 25 (Suppl. 01) 3-9
- 5 Stepanova M, Mishra A, Venkatesan C, Younossi ZM. In-hospital mortality and economic burden associated with hepatic encephalopathy in the United States from 2005 to 2009. Clin Gastroenterol Hepatol 2012; 10 (09) 1034-41.e1
- 6 Chirapongsathorn S, Krittanawong C, Enders FT. et al. Incidence and cost analysis of hospital admission and 30-day readmission among patients with cirrhosis. Hepatol Commun 2018; 2 (02) 188-198
- 7 Patidar KR, Thacker LR, Wade JB. et al. Symptom Domain Groups of the Patient-Reported Outcomes Measurement Information System Tools Independently Predict Hospitalizations and Re-hospitalizations in Cirrhosis. Dig Dis Sci 2017; 62 (05) 1173-1179
- 8 Tapper EB, Halbert B, Mellinger J. Rates of and Reasons for Hospital Readmissions in Patients With Cirrhosis: A Multistate Population-based Cohort Study. Clin Gastroenterol Hepatol 2016; 14 (08) 1181-1188.e2
- 9 Bustamante J, Rimola A, Ventura PJ. et al. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol 1999; 30 (05) 890-895
- 10 Wong RJ, Gish RG, Ahmed A. Hepatic encephalopathy is associated with significantly increased mortality among patients awaiting liver transplantation. Liver Transpl 2014; 20 (12) 1454-1461
- 11 Amodio P. Hepatic encephalopathy: Diagnosis and management. Liver Int 2018; 38 (06) 966-975
- 12 Bajaj JS, Wade JB, Gibson DP. et al. The multi-dimensional burden of cirrhosis and hepatic encephalopathy on patients and caregivers. Am J Gastroenterol 2011; 106 (09) 1646-1653
- 13 Vilstrup H, Amodio P, Bajaj J. et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014; 60 (02) 715-735
- 14 Weissenborn K. Hepatic Encephalopathy: Definition, Clinical Grading and Diagnostic Principles. Drugs 2019; 79 (1, Suppl 1) 5-9
- 15 Bajaj JS. Hepatic encephalopathy: classification and treatment. J Hepatol 2018; 68 (04) 838-839
- 16 Stewart CA, Smith GE. Minimal hepatic encephalopathy. Nat Clin Pract Gastroenterol Hepatol 2007; 4 (12) 677-685
- 17 Wijdicks EF. Hepatic Encephalopathy. N Engl J Med 2016; 375 (17) 1660-1670
- 18 Patidar KR, Bajaj JS. Covert and Overt Hepatic Encephalopathy: Diagnosis and Management. Clin Gastroenterol Hepatol 2015; 13 (12) 2048-2061
- 19 Luo M, Liu H, Hu SJ, Bai FH. Potential targeted therapies for the inflammatory pathogenesis of hepatic encephalopathy. Clin Res Hepatol Gastroenterol 2015; 39 (06) 665-673
- 20 Ong JP, Aggarwal A, Krieger D. et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 2003; 114 (03) 188-193
- 21 Coltart I, Tranah TH, Shawcross DL. Inflammation and hepatic encephalopathy. Arch Biochem Biophys 2013; 536 (02) 189-196
- 22 Dadsetan S, Balzano T, Forteza J. et al. Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy. Front Mol Neurosci 2016; 9: 106
- 23 Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A. et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation 2015; 12: 195
- 24 Luo M, Guo JY, Cao WK. Inflammation: A novel target of current therapies for hepatic encephalopathy in liver cirrhosis. World J Gastroenterol 2015; 21 (41) 11815-11824
- 25 Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci 2005; 62 (19-20): 2295-2304
- 26 Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis 2007; 22 (01) 125-138
- 27 Tranah TH, Vijay GK, Ryan JM, Shawcross DL. Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 2013; 28 (01) 1-5
- 28 Walker V. Ammonia metabolism and hyperammonemic disorders. Adv Clin Chem 2014; 67: 73-150
- 29 Parekh PJ, Balart LA. Ammonia and Its Role in the Pathogenesis of Hepatic Encephalopathy. Clin Liver Dis 2015; 19 (03) 529-537
- 30 Jayakumar AR, Norenberg MD. Hyperammonemia in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8 (03) 272-280
- 31 Lima LCD, Miranda AS, Ferreira RN, Rachid MA, Simões E Silva AC. Hepatic encephalopathy: Lessons from preclinical studies. World J Hepatol 2019; 11 (02) 173-185
- 32 Butterworth RF. The concept of “the inflamed brain” in acute liver failure: mechanisms and new therapeutic opportunities. Metab Brain Dis 2016; 31 (06) 1283-1287
- 33 Kerbert AJC, Jalan R. Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Res 2020;9 Epub 2020/05/14. doi: 10.12688/f1000research.22183.1. PubMed PMID: 32399191; PubMed Central PMCID: PMCPMC7194462.
- 34 Azhari H, Swain MG. Role of Peripheral Inflammation in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8 (03) 281-285
- 35 Réus GZ, Fries GR, Stertz L. et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300: 141-154
- 36 Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L. et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 2016; 13 (01) 83
- 37 Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 2016; 53 (02) 1181-1194
- 38 Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-172
- 39 Xie L, Zhang N, Zhang Q. et al. Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY) 2020; 12 (22) 22538-22549
- 40 Liddelow SA, Guttenplan KA, Clarke LE. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541 (7638): 481-487
- 41 Yun SP, Kam T-I, Panicker N. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 2018; 24 (07) 931-938
- 42 Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 2004; 40 (02) 247-254
- 43 Shawcross DL, Sharifi Y, Canavan JB. et al. Infection and systemic inflammation, not ammonia, are associated with Grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis. J Hepatol 2011; 54 (04) 640-649
- 44 Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 2015; 5 (Suppl. 01) S7-S20
- 45 Blank T, Prinz M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia 2013; 61 (01) 62-70
- 46 Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A. Disturbance of the Glutamate-Glutamine Cycle, Secondary to Hepatic Damage, Compromises Memory Function. Front Neurosci 2021; 15: 578922
- 47 Ochoa-Sanchez R, Rose CF. Pathogenesis of Hepatic Encephalopathy in Chronic Liver Disease. J Clin Exp Hepatol 2018; 8 (03) 262-271
- 48 Abg Abd Wahab DY, Gau CH, Zakaria R. et al. Review on Cross Talk between Neurotransmitters and Neuroinflammation in Striatum and Cerebellum in the Mediation of Motor Behaviour. BioMed Res Int 2019; 2019: 1767203
- 49 Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT. Members of the ISHEN Commission on Experimental Models of HE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 2009; 29 (06) 783-788
- 50 El-Marasy SA, El Awdan SA, Abd-Elsalam RM. Protective role of chrysin on thioacetamide-induced hepatic encephalopathy in rats. Chem Biol Interact 2019; 299: 111-119
- 51 Wang L-Q, Zhou H-J, Pan C-F, Zhu S-M, Xu L-M. Expression of IL-1β, IL-6 and TNF-α in rats with thioacetamide-induced acute liver failure and encephalopathy: correlation with brain edema. Asian Biomedicine 2011; 5 (02) 205-215
- 52 Zhang L, Tan J, Jiang X. et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res 2017; 50 (01) 26
- 53 Oliveira NK, de Brito Toscano EC, Silva Oliveira BD. et al. Modified levels of renin angiotensin related components in the frontal cortex and hippocampus were associated with neuroinflammation and lower neuroprotective effects of NGF during acute hepatic encephalopathy in mice. Protein Pept Lett 2022; 29 (12) 1042-1050
- 54 Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Rep 2021; 8: 962-970
- 55 Chen Z, Ruan J, Li D. et al. The role of intestinal bacteria and gut–brain Axis in hepatic encephalopathy. Front Cell Infect Microbiol 2021; 10: 595759
- 56 Bajaj JS. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014; 5 (03) 397-403
- 57 Jiang W, Desjardins P, Butterworth RF. Cerebral inflammation contributes to encephalopathy and brain edema in acute liver failure: protective effect of minocycline. J Neurochem 2009; 109 (02) 485-493
- 58 Gamal M, Abdel Wahab Z, Eshra M, Rashed L, Sharawy N. Comparative Neuroprotective Effects of Dexamethasone and Minocycline during Hepatic Encephalopathy. Neurol Res Int 2014; 2014: 254683
- 59 Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 2007; 46 (02) 514-519
- 60 Rodrigo R, Cauli O, Gomez-Pinedo U. et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 2010; 139 (02) 675-684
- 61 Cauli O, Rodrigo R, Piedrafita B, Llansola M, Mansouri MT, Felipo V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity. J Neurosci Res 2009; 87 (06) 1369-1374
- 62 Tenorio-Laranga J, Montoliu C, Urios A. et al. The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients. J Neuroinflammation 2015; 12: 183
- 63 Chastre A, Bélanger M, Beauchesne E, Nguyen BN, Desjardins P, Butterworth RF. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLoS One 2012; 7 (11) e49670
- 64 Dadsetan S, Balzano T, Forteza J. et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation 2016; 13 (01) 245
- 65 Murad HA, Gazzaz ZJ, Ali SS, Ibraheem MS. Candesartan, rather than losartan, improves motor dysfunction in thioacetamide-induced chronic liver failure in rats. Braz J Med Biol Res 2017; 50 (11) e6665 Epub 2017/09/28. doi: 10.1590/1414-431X20176665. PubMed PMID: 28953991; PubMed Central PMCID: PMCPMC5609604.
- 66 Agusti A, Hernández-Rabaza V, Balzano T. et al. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy. CNS Neurosci Ther 2017; 23 (05) 386-394
- 67 Erceg S, Monfort P, Hernández-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 2005; 41 (02) 299-306
- 68 França MER, Ramos RKLG, Oliveira WH. et al. Tadalafil restores long-term memory and synaptic plasticity in mice with hepatic encephalopathy. Toxicol Appl Pharmacol 2019; 379: 114673
- 69 Malaguarnera M, Llansola M, Balzano T. et al. Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors. Front Pharmacol 2019; 10: 132
- 70 Nichols JM, Kaplan BLF. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res 2020; 5 (01) 12-31
- 71 Avraham Y, Grigoriadis N, Poutahidis T. et al. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice. Br J Pharmacol 2011; 162 (07) 1650-1658
- 72 Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J Hepatol 2009; 51 (03) 528-534
- 73 Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM. Cannabidiol ameliorates cognitive and motor impairments in bile-duct ligated mice via 5-HT1A receptor activation. Br J Pharmacol 2010; 159 (04) 950-957
- 74 Baek SY, Lee EH, Oh TW. et al. Network Pharmacology-Based Approaches of Rheum undulatum Linne and Glycyrriza uralensis Fischer Imply their Regulation of Liver Failure with Hepatic Encephalopathy in Mice. Biomolecules 2020; 10 (03) 437
- 75 Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L. et al. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation 2016; 13: 41
- 76 Staziaki PV, Marques CM, Delattre AM. et al. Fish oil has beneficial effects on behavior impairment and oxidative stress in rats subjected to a hepatic encephalopathy model. CNS Neurol Disord Drug Targets 2013; 12 (01) 84-93
- 77 Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 2016; 16 (01) 51-67
- 78 Clària J, Flores-Costa R, Duran-Güell M, López-Vicario C. Proresolving lipid mediators and liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866 (11) 159023
- 79 Rodríguez MJ, Herrera F, Donoso W. et al. Pro-resolving lipid mediator resolvin E1 mitigates the progress of diethylnitrosamine-induced liver fibrosis in sprague-dawley rats by attenuating fibrogenesis and restricting proliferation. Int J Mol Sci 2020; 21 (22) 8827
- 80 Golshani M, Basiri M, Shabani M, Aghaei I, Asadi-Shekaari M. Effects of erythropoietin on bile duct ligation-induced neuro-inflammation in male rats. AIMS Neurosci 2019; 6 (02) 43-53
- 81 Aghaei I, Shabani M, Doustar N, Nazeri M, Dehpour A. Peroxisome proliferator-activated receptor-γ activation attenuates motor and cognition impairments induced by bile duct ligation in a rat model of hepatic cirrhosis. Pharmacol Biochem Behav 2014; 120: 133-139
- 82 Bond WS, Rex TS. Evidence that erythropoietin modulates neuroinflammation through differential action on neurons, astrocytes, and microglia. Front Immunol 2014; 5: 523
- 83 Opoku YK, Liu Z, Afrifa J. et al. Fibroblast Growth Factor-21 ameliorates hepatic encephalopathy by activating the STAT3-SOCS3 pathway to inhibit activated hepatic stellate cells. EXCLI J 2020; 19: 567-581 Epub 2020/06/03. doi: 10.17179/excli2020-1287. PubMed PMID: 32483404; PubMed Central PMCID: PMCPMC7257252
- 84 Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 2018; 4 (02) 72-82
- 85 Ashkani-Esfahani S, Bagheri F, Emami Y. et al. Protective Effects of Co-Enzyme Q10 on Thioacetamide-Induced Acute Liver Damage and Its Correlation With Behavioral, Biochemical, and Pathological Factors. Iran Red Crescent Med J 2016; 18 (08) e29166
- 86 Rogers AI. Therapeutic considerations in selected forms of acute and chronic liver disease. Med Clin North Am 1971; 55 (02) 373-390
- 87 Aghaei I, Nazeri M, Shabani M. et al. Erythropoietin ameliorates the motor and cognitive function impairments in a rat model of hepatic cirrhosis. Metab Brain Dis 2015; 30 (01) 197-204