Subscribe to RSS

DOI: 10.1055/s-0043-1768455
Maternal Blood Fatty Acid Levels in Fetal Growth Restriction
Níveis sanguíneos maternos de ácidos graxos na restrição do crescimento fetal
Abstract
Objective: To assess the maternal blood levels of fatty acids (FAs) in pregnancies with fetal growth restriction (FGR).
Methods: This prospective cross-sectional study included pregnant women with gestational age between 26 and 37 + 6 weeks with FGR and appropriate for gestational age (AGA) fetuses. The levels of saturated, trans, monounsaturated, and polyunsaturated FAs were measured using centrifugation and liquid chromatography. The Student's t-test, Mann–Whitney test, and general linear model, with gestational age and maternal weight as covariants, were used to compare FA levels and the FGR and AGA groups. The Chi-square was used to evaluate the association between groups and studied variables.
Results: Maternal blood sample was collected from 64 pregnant women, being 24 FGR and 40 AGA. A weak positive correlation was found between the palmitoleic acid level and maternal weight (r = 0.285, p = 0.036). A weak negative correlation was found between the gamma-linoleic acid level and gestational age (r = − 0.277, p = 0.026). The median of the elaidic acid level (2.3 vs. 4.7 ng/ml, p = 0.045) and gamma-linoleic acid (6.3 vs. 6.6 ng/ml, p = 0.024) was significantly lower in the FGR than the AGA group. The palmitoleic acid level was significantly higher in the FGR than AGA group (50.5 vs. 47.6 ng/ml, p = 0.033).
Conclusion: Pregnant women with FGR had lower elaidic acid and gamma-linoleic acid levels and higher palmitoleic acid levels than AGA fetuses.
Resumo
Objetivo: Avaliar os níveis sanguíneos maternos de ácidos graxos (AGs) em gestações com restrição de crescimento fetal (RCF).
Métodos: Este estudo prospectivo transversal incluiu gestantes com idade gestacional entre 26 e 37 semanas e 6 dias com RCF e fetos adequados para a idade gestacional (AIG). Os níveis de ácidos graxos saturados, trans, monoinsaturados e poliinsaturados foram medidos usando centrifugação e cromatografia líquida. O teste t-Student, o teste de Mann-Whitney e o modelo linear geral, com idade gestacional e peso materno como covariantes, foram utilizados para comparar os níveis de AGs e os grupos RCF e AIG. O teste Qui-quadrado foi utilizado para avaliar a associação entre os grupos e as variáveis estudadas.
Resultados: Amostra de sangue materno foi coletada de 64 gestantes, sendo 24 RCF e 40 AIG. Uma correlação positiva fraca foi encontrada entre o nível de ácido palmitoleico e o peso materno (r = 0,285, p = 0,036). Uma correlação negativa fraca foi encontrada entre o nível de ácido gama-linoleico e a idade gestacional (r = − 0,277, p = 0,026). A mediana do nível de ácido elaídico (2,3 vs. 4,7 ng/ml, p = 0,045) e ácido gama-linoleico (6,3 vs. 6,6 ng/ml, p = 0,024) foram significativamente menores no grupo RCF do que no grupo AIG. O nível de ácido palmitoleico foi significativamente maior no grupo RCF do que no grupo AIG (50,5 vs. 47,6 ng/ml, p = 0,033).
Conclusão: Gestantes com RCF apresentaram níveis mais baixos de ácido elaídico e ácido gama-linoleico e níveis mais elevados de ácido palmitoleico do que os fetos AIG.
Palavras-chave
Restrição de crescimento fetal - Sangue materno - Adequado para idade gestacional - Ácidos graxosContributions
All the authors contributed equally to the present paper, namely to the conception and design, data collection or analysis, interpretation of data, writing of the article, and review of the intellectual content. Therefore, all authors approved the final version to be published.
Publication History
Received: 06 April 2022
Accepted: 02 December 2022
Article published online:
27 April 2023
© 2023. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction - part 1. J Matern Fetal Neonatal Med 2016; 29 (24) 3977-3987
- 2 Nardozza LM, Caetano AC, Zamarian AC. et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet 2017; 295 (05) 1061-1077
- 3 Jones ML, Mark PJ, Waddell BJ. Maternal dietary omega-3 fatty acids and placental function. Reproduction 2014; 147 (05) R143-R152
- 4 Waitzberg DL, Garla P. [Contribution of omega-3 fatty acids for memory and cognitive function]. Nutr Hosp 2014; 30 (03) 467-477 Spanish.
- 5 Brantsæter AL, Birgisdottir BE, Meltzer HM. et al. Maternal seafood consumption and infant birth weight, length and head circumference in the Norwegian Mother and Child Cohort Study. Br J Nutr 2012; 107 (03) 436-444
- 6 Hsu MC, Tung CY, Chen HE. Omega-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: Putative mechanism and recommendation. J Affect Disord 2018; 238: 47-61
- 7 Simmonds LA, Sullivan TR, Skubisz M. et al. Omega-3 fatty acid supplementation in pregnancy-baseline omega-3 status and early preterm birth: exploratory analysis of a randomised controlled trial. BJOG 2020; 127 (08) 975-981
- 8 Gordijn SJ, Beune IM, Thilaganathan B. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016; 48 (03) 333-339
- 9 Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181 (01) 129-133
- 10 Gómez O, Figueras F, Fernández S. et al. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation. Ultrasound Obstet Gynecol 2008; 32 (02) 128-132
- 11 Arduini D, Rizzo G. Normal values of Pulsatility Index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med 1990; 18 (03) 165-172
- 12 Arias F. Accuracy of the middle-cerebral-to-umbilical-artery resistance index ratio in the prediction of neonatal outcome in patients at high risk for fetal and neonatal complications. Am J Obstet Gynecol 1994; 171 (06) 1541-1545
- 13 Kolarovic L, Fournier NC. A comparison of extraction methods for the isolation of phospholipids from biological sources. Anal Biochem 1986; 156 (01) 244-250
- 14 Agren JJ, Julkunen A, Penttilä I. Rapid separation of serum lipids for fatty acid analysis by a single aminopropyl column. J Lipid Res 1992; 33 (12) 1871-1876
- 15 Lepage G, Levy E, Ronco N, Smith L, Galéano N, Roy CC. Direct transesterification of plasma fatty acids for the diagnosis of essential fatty acid deficiency in cystic fibrosis. J Lipid Res 1989; 30 (10) 1483-1490
- 16 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Routledge; 1988
- 17 Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med 2021; 34 (01) 124-136
- 18 Larqué E, Gil-Sánchez A, Prieto-Sánchez MT, Koletzko B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br J Nutr 2012; 107 (Suppl 2): S77-S84
- 19 Bobiński R, Mikulska M, Mojska H, Ulman-Wodarz I, Sodowska P. Assessment of the diet components of pregnant women as predictors of risk of preterm birth and born baby with low birth weight. Ginekol Pol 2015; 86 (04) 292-299
- 20 Bobiński R, Mikulska M, Mojska H, Simon M. Comparison of the fatty acid composition of maternal blood and cord blood of mothers who delivered healthy full-term babies, preterm babies, and full-term small for gestational age infants. J Matern Fetal Neonatal Med 2013; 26 (01) 96-102
- 21 Grohmann RM, Corazza IC, Peixoto AB. et al. Maternal blood fatty acid levels in small and adequate for gestational age pregnancies. J Obstet Gynaecol India 2022; 72 (Suppl 1): 217-223
- 22 Das UN. A perinatal strategy to prevent coronary heart disease. Nutrition 2003; 19 (11-12): 1022-1027
- 23 Wadhwani N, Patil V, Joshi S. Maternal long chain polyunsaturated fatty acid status and pregnancy complications. Prostaglandins Leukot Essent Fatty Acids 2018; 136: 143-152
- 24 Cetin I, Giovannini N, Alvino G. et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res 2002; 52 (05) 750-755
- 25 Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatr Res 2008; 64 (06) 615-620
- 26 Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11 (11) CD003402
- 27 Saccone G, Berghella V, Maruotti GM, Sarno L, Martinelli P. Omega-3 supplementation during pregnancy to prevent recurrent intrauterine growth restriction: systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol 2015; 46 (06) 659-664
- 28 Chen B, Ji X, Zhang L, Hou Z, Li C, Tong Y. Fish oil supplementation improves pregnancy outcomes and size of the newborn: a meta-analysis of 21 randomized controlled trials. J Matern Fetal Neonatal Med 2016; 29 (12) 2017-2027