Semin intervent Radiol 2023; 40(02): 136-143
DOI: 10.1055/s-0043-1768678
Review Article

Treatment of Difficult, Calcified Lesions: Plaque Modification Strategies

Mustafa Haddad
1   Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
,
Matthew J. Scheidt
1   Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
› Institutsangaben

Abstract

Endovascular management of peripheral arterial disease is continually evolving. Most changes focus on addressing the challenges that hinder optimal patient outcomes; one of the most significant is how to best treat calcified lesions. Hardened plaque results in a variety of technical issues including impaired device delivery, decreased luminal revascularization, poor stent expansion, heightened risk of in-stent stenosis or thrombosis, and increased procedural time and cost. For this reason, plaque modification devices have been developed to mitigate this issue. This paper will describe these strategies and provide the reader with an overview of devices that can be used to treat chronically hardened lesions.



Publikationsverlauf

Artikel online veröffentlicht:
16. Juni 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sheeran D, Wilkins LR. Long chronic total occlusions: revascularization strategies. Semin Intervent Radiol 2018; 35 (05) 469-476
  • 2 Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014; 83 (06) E212-E220
  • 3 Mustapha JA, Diaz-Sandoval LJ, Saab F. Infrapopliteal calcification patterns in critical limb ischemia: diagnostic, pathologic and therapeutic implications in the search for the endovascular holy grail. J Cardiovasc Surg (Torino) 2017; 58 (03) 383-401
  • 4 Huang CL, Wu IH, Wu YW. et al. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS One 2014; 9 (02) e90201
  • 5 Guzman RJ, Brinkley DM, Schumacher PM, Donahue RM, Beavers H, Qin X. Tibial artery calcification as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol 2008; 51 (20) 1967-1974
  • 6 Thukkani AK, Kinlay S. Endovascular intervention for peripheral artery disease. Circ Res 2015; 116 (09) 1599-1613
  • 7 Shah M, Najam O, Bhindi R, De Silva K. Calcium modification techniques in complex percutaneous coronary intervention. Circ Cardiovasc Interv 2021; 14 (05) e009870
  • 8 Huizing E, Kum S, Adams G, Ferraresi R, De Vries JPM, Ünlü Ç. High-pressure, non compliant balloon angioplasty for long and calcified infrapopliteal and inframalleolar lesions is feasible. Int Angiol 2020; 39 (05) 390-397
  • 9 Jaff MR, Nelson T, Ferko N, Martinson M, Anderson LH, Hollmann S. Endovascular interventions for femoropopliteal peripheral artery disease: a network meta-analysis of current technologies. J Vasc Interv Radiol 2017; 28 (12) 1617-1627.e1
  • 10 Cejna M. Cutting balloon: review on principles and background of use in peripheral arteries. Cardiovasc Intervent Radiol 2005; 28 (04) 400-408
  • 11 Kasirajan K, Schneider PA. Early outcome of “cutting” balloon angioplasty for infrainguinal vein graft stenosis. J Vasc Surg 2004; 39 (04) 702-708
  • 12 Dick P, Sabeti S, Mlekusch W. et al. Conventional balloon angioplasty versus peripheral cutting balloon angioplasty for treatment of femoropopliteal artery in-stent restenosis: initial experience. Radiology 2008; 248 (01) 297-302
  • 13 Ansel GM, Sample NS, Botti III Jr CF. et al. Cutting balloon angioplasty of the popliteal and infrapopliteal vessels for symptomatic limb ischemia. Catheter Cardiovasc Interv 2004; 61 (01) 1-4
  • 14 Lugenbiel I, Grebner M, Zhou Q. et al. Treatment of femoropopliteal lesions with the AngioSculpt scoring balloon - results from the Heidelberg PANTHER registry. Vasa 2018; 47 (01) 49-55
  • 15 Mustapha JA, Lansky A, Shishehbor M. et al; Chocolate Bar Investigators. A prospective, multi-center study of the chocolate balloon in femoropopliteal peripheral artery disease: the Chocolate BAR registry. Catheter Cardiovasc Interv 2018; 91 (06) 1144-1148
  • 16 Shishehbor MH, Zeller T, Werner M. et al. Randomized trial of Chocolate Touch compared with Lutonix drug-coated balloon in femoropopliteal lesions (Chocolate Touch Study). Circulation 2022; 145 (22) 1645-1654
  • 17 Holden A, Lichtenberg M, Nowakowski P, Wissgott C, Hertting K, Brodmann M. Prospective study of serration angioplasty in the infrapopliteal arteries using the Serranator device: PRELUDE BTK Study. J Endovasc Ther 2022; 29 (04) 586-593
  • 18 Brodmann M, Werner M, Holden A. et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: results of Disrupt PAD II. Catheter Cardiovasc Interv 2019; 93 (02) 335-342
  • 19 Brodmann M, Holden A, Zeller T. Safety and feasibility of intravascular lithotripsy for treatment of below-the-knee arterial stenoses. J Endovasc Ther 2018; 25 (04) 499-503
  • 20 Tepe G, Brodmann M, Werner M. et al; Disrupt PAD III Investigators. Intravascular lithotripsy for peripheral artery calcification: 30-day outcomes from the Randomized Disrupt PAD III Trial. JACC Cardiovasc Interv 2021; 14 (12) 1352-1361
  • 21 Adams G, Soukas PA, Mehrle A, Bertolet B, Armstrong EJ. Intravascular lithotripsy for treatment of calcified infrapopliteal lesions: results from the Disrupt PAD III Observational Study. J Endovasc Ther 2022; 29 (01) 76-83
  • 22 Adams G, Shammas N, Mangalmurti S. et al. Intravascular lithotripsy for treatment of calcified lower extremity arterial stenosis: initial analysis of the Disrupt PAD III Study. J Endovasc Ther 2020; 27 (03) 473-480
  • 23 Davies MG, Anaya-Ayala JE. Endovascular techniques in limb salvage: cutting, cryo, brachy, and drug-eluting balloons. Methodist DeBakey Cardiovasc J 2013; 9 (02) 69-72
  • 24 Spiliopoulos S, Katsanos K, Karnabatidis D. et al. Cryoplasty versus conventional balloon angioplasty of the femoropopliteal artery in diabetic patients: long-term results from a prospective randomized single-center controlled trial. Cardiovasc Intervent Radiol 2010; 33 (05) 929-938
  • 25 Jahnke T, Mueller-Huelsbeck S, Charalambous N. et al. Prospective, randomized single-center trial to compare cryoplasty versus conventional angioplasty in the popliteal artery: midterm results of the COLD study. J Vasc Interv Radiol 2010; 21 (02) 186-194
  • 26 Bosiers M, Deloose K, Vermassen F. et al. The use of the cryoplasty technique in the treatment of infrapopliteal lesions for Critical Limb Ischemia patients in a routine hospital setting: one-year outcome of the Cryoplasty CLIMB Registry. J Cardiovasc Surg (Torino) 2010; 51 (02) 193-202
  • 27 Waksman R, Laird JR, Jurkovitz CT. et al; Peripheral Artery Radiation Investigational Study (PARIS) Investigators. Intravascular radiation therapy after balloon angioplasty of narrowed femoropopliteal arteries to prevent restenosis: results of the PARIS feasibility clinical trial. J Vasc Interv Radiol 2001; 12 (08) 915-921
  • 28 Andras A, Hansrani M, Stewart M, Stansby G. Intravascular brachytherapy for peripheral vascular disease. Cochrane Database Syst Rev 2014; 2014 (01) CD003504
  • 29 Wardle BG, Ambler GK, Radwan RW, Hinchliffe RJ, Twine CP. Atherectomy for peripheral arterial disease. Cochrane Database Syst Rev 2020; 9 (09) CD006680
  • 30 Todd Jr KE, Ahanchi SS, Maurer CA, Kim JH, Chipman CR, Panneton JM. Atherectomy offers no benefits over balloon angioplasty in tibial interventions for critical limb ischemia. J Vasc Surg 2013; 58 (04) 941-948
  • 31 Ramkumar N, Martinez-Camblor P, Columbo JA, Osborne NH, Goodney PP, O'Malley AJ. Adverse events after atherectomy: analyzing long-term outcomes of endovascular lower extremity revascularization techniques. J Am Heart Assoc 2019; 8 (12) e012081
  • 32 Madassery S. Rock-hard chronic thrombotic occlusion and its management in endovascular interventions. Semin Intervent Radiol 2018; 35 (05) 461-468
  • 33 Adlakha S, Sheikh M, Wu J. et al. Stent fracture in the coronary and peripheral arteries. J Interv Cardiol 2010; 23 (04) 411-419
  • 34 Stavroulakis K, Schwindt A, Torsello G. et al. Directional atherectomy with antirestenotic therapy vs drug-coated balloon angioplasty alone for isolated popliteal artery lesions. J Endovasc Ther 2017; 24 (02) 181-188
  • 35 Shammas NW, Dippel EJ, Coiner D, Shammas GA, Jerin M, Kumar A. Preventing lower extremity distal embolization using embolic filter protection: results of the PROTECT registry. J Endovasc Ther 2008; 15 (03) 270-276
  • 36 Ormiston W, Dyer-Hartnett S, Fernando R, Holden A. An update on vessel preparation in lower limb arterial intervention. CVIR Endovasc 2020; 3 (01) 86
  • 37 Shammas NW, Purushottam B, Shammas WJ. et al; JET-RANGER Investigators. Jetstream atherectomy followed by paclitaxel-coated balloons versus balloon angioplasty followed by paclitaxel-coated balloons: twelve-month exploratory results of the prospective randomized JET-RANGER study. Vasc Health Risk Manag 2022; 18: 603-615
  • 38 McKinsey JF, Zeller T, Rocha-Singh KJ, Jaff MR, Garcia LA, Investigators DL. DEFINITIVE LE Investigators. Lower extremity revascularization using directional atherectomy: 12-month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Interv 2014; 7 (08) 923-933
  • 39 Zeller T, Langhoff R, Rocha-Singh KJ. et al; DEFINITIVE AR Investigators. Directional atherectomy followed by a paclitaxel-coated balloon to inhibit restenosis and maintain vessel patency: twelve-month results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 2017; 10 (09) e004848
  • 40 Das T, Mustapha J, Indes J. et al. Technique optimization of orbital atherectomy in calcified peripheral lesions of the lower extremities: the CONFIRM series, a prospective multicenter registry. Catheter Cardiovasc Interv 2014; 83 (01) 115-122
  • 41 Shammas NW, Lam R, Mustapha J. et al. Comparison of orbital atherectomy plus balloon angioplasty vs. balloon angioplasty alone in patients with critical limb ischemia: results of the CALCIUM 360 randomized pilot trial. J Endovasc Ther 2012; 19 (04) 480-488
  • 42 Blebea J, Ouriel K, Green RM. et al. Laser angioplasty in peripheral vascular disease: symptomatic versus hemodynamic results. J Vasc Surg 1991; 13 (02) 222-228 , discussion 229–230
  • 43 McCarthy WJ, Vogelzang RL, Nemcek Jr AA. et al. Excimer laser-assisted femoral angioplasty: early results. J Vasc Surg 1991; 13 (05) 607-614
  • 44 Mallios A, Blebea J, Buster B, Messiner R, Taubman K, Ma H. Laser atherectomy for the treatment of peripheral arterial disease. Ann Vasc Surg 2017; 44: 269-276
  • 45 Fernandez N, McEnaney R, Marone LK. et al. Predictors of failure and success of tibial interventions for critical limb ischemia. J Vasc Surg 2010; 52 (04) 834-842
  • 46 Shrikhande GV, Khan SZ, Hussain HG, Dayal R, McKinsey JF, Morrissey N. Lesion types and device characteristics that predict distal embolization during percutaneous lower extremity interventions. J Vasc Surg 2011; 53 (02) 347-352
  • 47 Gandini R, Del Giudice C, Merolla S, Morosetti D, Pampana E, Simonetti G. Treatment of chronic SFA in-stent occlusion with combined laser atherectomy and drug-eluting balloon angioplasty in patients with critical limb ischemia: a single-center, prospective, randomized study. J Endovasc Ther 2013; 20 (06) 805-814
  • 48 Kokkinidis DG, Hossain P, Jawaid O. et al. Laser atherectomy combined with drug-coated balloon angioplasty is associated with improved 1-year outcomes for treatment of femoropopliteal in-stent restenosis. J Endovasc Ther 2018; 25 (01) 81-88
  • 49 Sultan S, Tawfick W, Hynes N. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI). Vasc Endovascular Surg 2013; 47 (03) 179-191